A211220 For any partition of n consider the sum of the sigma of each element. Sequence gives the maximum of such values.
1, 3, 4, 7, 8, 12, 13, 15, 16, 19, 20, 28, 29, 31, 32, 35, 36, 40, 41, 43, 44, 47, 48, 60, 61, 63, 64, 67, 68, 72, 73, 75, 76, 79, 80, 91, 92, 94, 95, 98, 99, 103, 104, 106, 107, 110, 111, 124, 125, 127, 128, 131, 132, 136, 137, 139, 140, 143, 144, 168, 169
Offset: 1
Keywords
Examples
For n=10 the partition (4,6) gives sigma(4)+sigma(6)= 7 + 12 = 19 that is the maximum value that can be reached. For n=21 the partitions (1,8,12), (3,6,12) and (1,2,6,12) give: sigma(1)+sigma(8)+sigma(12)= 1 + 15 + 28 = 44; sigma(3)+sigma(6)+sigma(12)= 4 + 12 + 28 = 44; sigma(1)+sigma(2)+ sigma(6)+sigma(12)= 1 + 3 + 12 + 28 = 44 that is the maximum value that can be reached.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory): b:= proc(n, i) option remember; `if`(n=0, 0, `if`(i<1, -infinity, max(seq(sigma(i)*j+b(n-i*j, i-1), j=0..n/i)))) end: a:= n-> b(n$2): seq(a(n), n=1..70); # Alois P. Heinz, May 30 2013
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 0, If[i<1, -Infinity, Max[Table[ DivisorSigma[1, i]*j + b[n-i*j, i-1], {j, 0, n/i}]]]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)
Extensions
Extended beyond a(47) by Alois P. Heinz, May 30 2013
Comments