cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211221 For any partition of n consider the product of the sigma of each element. Sequence gives the maximum of such values.

Original entry on oeis.org

1, 3, 4, 9, 12, 27, 36, 81, 108, 243, 324, 729, 972, 2187, 2916, 6561, 8748, 19683, 26244, 59049, 78732, 177147, 236196, 531441, 708588, 1594323, 2125764, 4782969, 6377292, 14348907, 19131876, 43046721, 57395628, 129140163, 172186884, 387420489, 516560652
Offset: 1

Views

Author

Paolo P. Lava, Apr 13 2012

Keywords

Examples

			For n=21 the partition (2,2,2,2,2,2,2,2,2,3) gives sigma(2)^9*sigma(3)=3^9*4=78732 that is the maximum value that can be reached.
		

Crossrefs

Programs

  • Maple
    with(numtheory); with(combinat);
    A211221:=proc(q)
    local b,c,i,j,k,m,n,t;
    for n from 1 to q do
      k:=partition(n); b:=numbpart(n); m:=0;
      for i from 1 to b do
        c:=nops(k[i]); t:=1;
        for j from 1 to c do t:=t*sigma(k[i][j]); od; if t>m then m:=t; fi; od;
      print(m);
    od; end:
    A211221(100)
  • Mathematica
    LinearRecurrence[{0,3},{1,3,4},40] (* Harvey P. Dale, Jun 06 2015 *)

Formula

For n>1, a(n) = 3^n/2 for n even and a(n) = 4*3^(n-3)/2 for n odd.
For n>3, a(n) = 3*a(n-2). G.f.: x*(1+3*x+x^2)/(1-3*x^2). [Colin Barker, Apr 18 2012]
Closed form: a(1)=1, then a(n) = 1/6*(7-(-1)^(n-2))*3^(1/4*(-1)^(n-2))*3^(1/2*(n-2))*27^(1/4) = 3^((2*n+(-1)^n-5)/4)*(7-(-1)^n)/2. [Paolo P. Lava, Apr 20 2012]