cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A211226 Triangular array: T(n,k) = f(n)/(f(k)*f(n-k)), where f(n) = (floor(n/2))!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 6, 3, 3, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 4, 4, 12, 6, 12, 4, 4, 1, 1, 1, 4, 4, 6, 6, 4, 4, 1, 1, 1, 5, 5, 20, 10, 30, 10, 20, 5, 5, 1, 1, 1, 5, 5, 10, 10, 10, 10, 5, 5, 1, 1, 1, 6, 6, 30, 15
Offset: 0

Views

Author

Peter Bala, Apr 05 2012

Keywords

Examples

			Triangle begins
.n\k.|....0....1....2....3....4....5....6....7....8....9...10...11
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
..0..|....1
..1..|....1....1
..2..|....1....1....1
..3..|....1....1....1....1
..4..|....1....2....2....2....1
..5..|....1....1....2....2....1....1
..6..|....1....3....3....6....3....3....1
..7..|....1....1....3....3....3....3....1....1
..8..|....1....4....4...12....6...12....4....4....1
..9..|....1....1....4....4....6....6....4....4....1....1
.10..|....1....5....5...20...10...30...10...20....5....5....1
.11..|....1....1....5....5...10...10...10...10....5....5....1....1
...
		

Crossrefs

Cf. A007318, A056040, A211227 (row sums), A211228 (shallow diagonal sums), A211229 (inverse), A211230 (array squared).

Formula

T(n,k) := f(n)/(f(k)*f(n-k)), where f(n) := (floor(n/2))!.
T(2*n+1,2*k) = T(2*n+1,2*k+1) = T(2*n,2*k) = binomial(n,k);
T(2*n,2*k+1) = n*binomial(n-1,k).
Recurrence equations:
T(2*n,2*k) = T(2*n-1,2*k) + T(2*n-1,2*k-1);
T(2*n,2*k+1) = T(2*n-1,2*k+1) + (n-1)*T(2*n-1,2*k);
T(2*n+1,2*k) = T(2*n,2*k); T(2*n+1,2*k+1) = T(2*n,2*k).
The Star of David property holds:
T(n,k+1)*T(n+1,k)*T(n+2,k+2) = T(n,k)*T(n+2,k+1)*T(n+1,k+2).
O.g.f.: (1 + t*(1+x) - t^2*(1-x+x^2) - t^3*(1+x+x^2+x^3))/(1 - t^2*(1+x^2))^2 = sum {n>=0} R(n,x)*t^n = 1 + (1+x)*t + (1+x+x^2)*t^2 + (1+x+x^2+x^3)*t^3 + ....
E.g.f.: cosh(t*sqrt(1+x^2)) + (1+x+x*t/2)/sqrt(1+x^2)*sinh(t*sqrt(1+x^2)) = sum {n>=0} R(n,x)*t^n/n! = 1 + (1+x)*t + (1+x+x^2)*t^2/2! + (1+x+x^2+x^3)*t^3/3! + ....
Row generating polynomials: R(2*n+1,x) = (1+x)*(1+x^2)^n; R(2*n,x) = (1+n*x+x^2)*(1+x^2)^(n-1).
Row sums: A211227. Shallow diagonal sums A211228. Central terms T(2*n,n) equal A056040(n).
The inverse array A211229 involves the derangement numbers A000166. The squared array is A211230.

A211227 Row sums of A211226.

Original entry on oeis.org

1, 2, 3, 4, 8, 8, 20, 16, 48, 32, 112, 64, 256, 128, 576, 256, 1280, 512, 2816, 1024, 6144, 2048, 13312, 4096, 28672, 8192, 61440, 16384, 131072, 32768, 278528, 65536, 589824, 131072, 1245184, 262144, 2621440, 524288, 5505024
Offset: 0

Views

Author

Peter Bala, Apr 05 2012

Keywords

Comments

The odd-indexed terms of the sequence a(2*n-1) count the compositions of n+1, while the even-indexed terms a(2*n) count the total number of parts in the composition of n+1. Compare with A211228.

Examples

			The four compositions of 3 are 1+1+1, 1+2, 2+1 and 3 having 8 parts in total. Hence a(3) = 4 and a(4) = 8.
		

Crossrefs

Formula

a(n) = sum {k = 0..n } f(n)/(f(k)*f(n-k)), where f(n) := (floor(n/2))!.
a(2*n-1) = 2^n = A000079(n); a(2*n) = (n+2)*2^(n-1) = A001792(n).
O.g.f.: (1+2*x-x^2-4*x^3)/(1-2*x^2)^2 = 1 + 2*x + 3*x^2 + 4*x^3 + 8*x^4 + ....
E.g.f.: cosh(sqrt(2)*x) + (4+x)/(2*sqrt(2))*sinh(sqrt(2)*x) = 1 + 2*x + 3*x^2/2! + 4*x^3/3! + 8*x^4/4! + .....
Showing 1-2 of 2 results.