A211263
Number of integer pairs (x,y) such that 0
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 3, 3, 1, 1, 3, 3, 2, 2, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 2, 2, 3, 3, 1, 1, 4, 4, 1, 1, 3, 3, 2, 2, 2, 2, 2, 2, 4, 4, 1, 1, 2, 2, 2, 2, 4, 4, 1, 1, 4, 4, 1, 1, 3, 3, 3, 3, 2, 2, 1, 1, 5, 5, 1, 1
Offset: 1
Keywords
Examples
a(12) counts these pairs: (1,6) and (2,3).
Crossrefs
Cf. A211266.
Programs
-
Mathematica
a = 1; b = n; z1 = 120; t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1}, {y, x + 1, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] Table[c[n, n], {n, 1, z1}] (* A056924 *) Table[c[n, n + 1], {n, 1, z1}] (* A211159 *) Table[c[n, 2*n], {n, 1, z1}] (* A211261 *) Table[c[n, 3*n], {n, 1, z1}] (* A211262 *) Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211263 *) Print c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}] Table[c1[n, n], {n, 1, z1}] (* A211264 *) Table[c1[n, n + 1], {n, 1, z1}] (* A211265 *) Table[c1[n, 2*n], {n, 1, z1}] (* A211266 *) Table[c1[n, 3*n], {n, 1, z1}] (* A211267 *) Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)
Comments