cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211264 Number of integer pairs (x,y) such that 0 < x < y <= n and x*y <= n.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 16, 17, 19, 21, 23, 24, 27, 28, 31, 33, 35, 36, 40, 41, 43, 45, 48, 49, 53, 54, 57, 59, 61, 63, 67, 68, 70, 72, 76, 77, 81, 82, 85, 88, 90, 91, 96, 97, 100, 102, 105, 106, 110, 112, 116, 118, 120, 121, 127, 128, 130, 133, 136
Offset: 1

Views

Author

Clark Kimberling, Apr 06 2012

Keywords

Comments

Partial sums of A056924.
For a guide to related sequences, see A211266.

Crossrefs

Programs

  • Magma
    [0] cat [&+[(&+[p[2]: p in Factorization(i)] mod 2) *Floor(n div i):i in [2..n] ]:n in [2..65]]; // Marius A. Burtea, Oct 17 2019
    
  • Maple
    with(numtheory): seq(add((bigomega(i) mod 2)*floor(n/i), i=1..n), n=1..60); # Ridouane Oudra, Oct 17 2019
    # Alternative:
    ListTools:-PartialSums(map(t-> floor(numtheory:-tau(t)/2), [$1..100])); # Robert Israel, Oct 18 2019
  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x + 1, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A056924 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A211159 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211261 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211262 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211263 *)
    Print
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Table[c1[n, n], {n, 1, z1}]          (* A211264 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A211265 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211266 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211267 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)
  • Python
    from math import isqrt
    def A211264(n): return (lambda m: sum(n//k for k in range(1, m+1))-m*(m+1)//2)(isqrt(n)) # Chai Wah Wu, Oct 08 2021

Formula

a(n) = (1/2)*Sum_{i=1..n} (1 - A008836(i))*floor(n/i). - Enrique Pérez Herrero, Jul 10 2012 [Corrected by Ridouane Oudra, Oct 17 2019]
From Ridouane Oudra, Oct 17 2019: (Start)
a(n) = Sum_{i=1..n} A066829(i)*floor(n/i)
a(n) = (1/2)*(A006218(n) - A000196(n)). (End)
From Ridouane Oudra, Sep 28 2024: (Start)
a(n) = Sum_{k=1..n} floor((sqrt(k^2 + 4*n) - k)/2) ;
a(n) = A094820(n) - A000196(n) ;
a(n) = A181972(2*n). (End)