A211267
Number of integer pairs (x,y) such that 0
0, 1, 3, 6, 9, 12, 16, 20, 23, 28, 32, 37, 40, 46, 51, 56, 60, 65, 71, 77, 81, 87, 91, 99, 103, 109, 115, 121, 125, 133, 138, 145, 150, 156, 163, 169, 174, 181, 187, 196, 199, 207, 212, 220, 226, 232, 239, 247, 252, 259, 265, 274, 277, 287, 293, 301, 307
Offset: 1
Keywords
Examples
a(5) counts these pairs: (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A211266.
Programs
-
Maple
N:= 100: # for a(1)..a(N) L:= Vector(N): for x from 1 to floor(sqrt(N)) do for y from x+1 while y<=N and x*y<=3*N do n0:= max(y, ceil(x*y/3)); L[n0]:= L[n0]+1; od od: ListTools:-PartialSums(convert(L,list)); # Robert Israel, Oct 18 2019
-
Mathematica
a = 1; b = n; z1 = 120; t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1}, {y, x + 1, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] Table[c[n, n], {n, 1, z1}] (* A056924 *) Table[c[n, n + 1], {n, 1, z1}] (* A211159 *) Table[c[n, 2*n], {n, 1, z1}] (* A211261 *) Table[c[n, 3*n], {n, 1, z1}] (* A211262 *) Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211263 *) Print c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}] Table[c1[n, n], {n, 1, z1}] (* A211264 *) Table[c1[n, n + 1], {n, 1, z1}] (* A211265 *) Table[c1[n, 2*n], {n, 1, z1}] (* A211266 *) Table[c1[n, 3*n], {n, 1, z1}] (* A211267 *) Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)
Comments