A211316 Maximal size of sum-free set in additive group of integers mod n.
1, 1, 2, 2, 3, 2, 4, 3, 5, 4, 6, 4, 7, 6, 8, 6, 9, 6, 10, 7, 11, 8, 12, 10, 13, 9, 14, 10, 15, 10, 16, 12, 17, 14, 18, 12, 19, 13, 20, 14, 21, 14, 22, 18, 23, 16, 24, 16, 25, 18, 26, 18, 27, 22, 28, 19, 29, 20, 30, 20, 31, 21, 32, 26, 33, 22, 34, 24, 35, 24
Offset: 2
Keywords
References
- Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, Manuscript, May 2017. See Table in Section 1.6.1.
- A. P. Street, Counting non-isomorphic sum-free sets, in Proc. First Australian Conf. Combinatorial Math., Univ. Newcastle, 1972, pp. 141-143.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 2..10000
- Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.1.
- Ben Green and Imre Z. Ruzsa, Sum-free sets in abelian groups, arXiv:math/0307142 [math.CO], 2004.
Programs
-
Haskell
a211316 n | not $ null ps = n * (head ps + 1) `div` (3 * head ps) | m == 0 = n' | otherwise = (n - 1) `div` 3 where ps = [p | p <- a027748_row n, mod p 3 == 2] (n',m) = divMod n 3 -- Reinhard Zumkeller, Apr 25 2012
-
Mathematica
a[n_] := Module[{f = FactorInteger[n][[All, 1]]}, For[i = 1, i <= Length[f], i++, If[Mod[f[[i]], 3]==2, Return[n*(f[[i]] + 1)/3/f[[i]]]]]; If[Mod[n, 3] == 1, n-1, n]/3] Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Aug 02 2018, from PARI *)
-
PARI
a(n)=my(f=factor(n)[,1]); for(i=1,#f, if(f[i]%3==2, return(n*(f[i]+1)/3/f[i]))); if(n%3, n-1, n)/3 \\ Charles R Greathouse IV, Sep 02 2015
Formula
If n is divisible by a prime == 2 mod 3 then a(n) = n(p+1)/(3p) where p is the smallest such prime divisor; otherwise if n is divisible by 3 then a(n) = n/3; otherwise all prime divisors of n are == 1 mod 3 and a(n) = (n-1)/3.
In particular, a(2n) = n (cf. A211317).