A211347 Numbers n such that n = sigma_k(m) for some k >= 1.
1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 24, 26, 28, 30, 31, 32, 33, 36, 38, 39, 40, 42, 44, 48, 50, 54, 56, 57, 60, 62, 63, 65, 68, 72, 73, 74, 78, 80, 82, 84, 85, 90, 91, 93, 96, 98, 102, 104, 108, 110, 112, 114, 120, 121, 122
Offset: 1
Keywords
Examples
Sigma_2(4) = 1 + 4 + 16 = 21 so 21 is in the sequence.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
- Ivan Niven, The asymptotic density of sequences, Bull. Amer. Math. Soc., Vol. 57 (1951), pp. 420-434.
- R. Sita Rama Chandra Rao and G. Sri Rama Chandra Murty, On a theorem of Niven, Canadian Mathematical Bulletin, Vol 22, No. 1 (1979), pp. 113-115.
- Eric W. Weisstein, MathWorld: Divisor function
Crossrefs
Programs
-
Mathematica
upto[n_] := Select[Union@Flatten[{1, DivisorSigma[Range@Max[1,Floor@Log[#,n]], #] & /@ Range[2,n]}], # <= n &]; upto[122] (* Giovanni Resta, Feb 05 2013 *)
-
PARI
list(lim)=if(lim<3, return(if(lim<1,[],[1]))); my(v=List([1])); for(k=1,logint((lim\=1)-1,2), forfactored(m=2,sqrtnint(lim-1,k), my(t=sigma(m,k)); if(t<=lim, listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Apr 09 2022
Comments