A211370 Array read by antidiagonals: T(m,n) = Sum( n <= i <= m+n-1 ) i!.
1, 2, 3, 6, 8, 9, 24, 30, 32, 33, 120, 144, 150, 152, 153, 720, 840, 864, 870, 872, 873, 5040, 5760, 5880, 5904, 5910, 5912, 5913, 40320, 45360, 46080, 46200, 46224, 46230, 46232, 46233, 362880, 403200, 408240, 408960, 409080, 409104, 409110, 409112, 409113
Offset: 1
Examples
T(3,2) = Sum( 2 <= i <= 4 ) i! = 2! + 3! + 4! = 32. The array starts: 1, 2, 6, 24, 120, 720, ... 3, 8, 30, 144, 840, 5760, ... 9, 32, 150, 864, 5880, 46080, ... 33, 152, 870, 5904, 46200, 408960, ... 153, 872, 5910, 46224, 409080, 4037760, ... 873, 5912, 46230, 409104, 4037880, 43954560, ...
Links
- Tilman Piesk, Table of n, a(n) for n = 1..2016
- Tilman Piesk, Circular shifts to the left (Arrays of permutations)
Programs
-
Mathematica
Table[Function[m, Sum[ i!, {i, n, m + n - 1}]][k - n + 1], {k, 9}, {n, k, 1, -1}] // Flatten (* Michael De Vlieger, Apr 30 2017 *)
Comments