A211378 Goodstein sequence starting with 19.
19, 7625597484990, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084099
Offset: 0
Examples
The first terms are (see Wikipedia): a(0) = 2^2^2 + 2^1 + 2^0 = 19 a(1) = 3^3^3 + 3^1 + 3^0 - 1 = 7625597484990 a(2) = 4^4^4 + 4^1 - 1 (155 digits) a(3) = 5^5^5 + 3 - 1 (2185 digits) a(4) = 6^6^6 + 2 - 1 (36306 digits) a(5) = 7^7^7 + 1 - 1 (695975 digits) a(6) = 8^8^8 - 1 (15151336 digits).
Links
- Eric Weisstein's World of Mathematics, Goodstein Sequence
- Wikipedia, Goodstein's Theorem
- Reinhard Zumkeller, Haskell programs for Goodstein sequences
Programs
-
Haskell
-- See Link
Extensions
Offset changed to 0 by Nicholas Matteo, Aug 21 2019
Comments