cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211380 Number of pairs of intersecting diagonals in the interior and exterior of a regular n-gon.

Original entry on oeis.org

0, 1, 5, 15, 42, 94, 189, 340, 572, 903, 1365, 1981, 2790, 3820, 5117, 6714, 8664, 11005, 13797, 17083, 20930, 25386, 30525, 36400, 43092, 50659, 59189, 68745, 79422, 91288, 104445, 118966, 134960, 152505, 171717, 192679, 215514, 240310, 267197, 296268, 327660
Offset: 3

Views

Author

Martin Renner, Feb 07 2013

Keywords

Crossrefs

Programs

  • Maple
    a:=n->piecewise(n mod 2 = 0,1/8*n*(n^3-11*n^2+43*n-58),n mod 2 = 1,1/8*n*(n-3)*(n^2-8*n+19),0);
  • Mathematica
    Drop[CoefficientList[Series[x^4(2x^5-3x^4-7x^3-x^2-2x-1)/((x-1)^5(x+1)^2),{x,0,50}],x],3] (* or *) LinearRecurrence[{3,-1,-5,5,1,-3,1},{0,1,5,15,42,94,189},50] (* Harvey P. Dale, Dec 03 2022 *)
  • Python
    def A211380(n): return n*(n*(n*(n-11)+43)-58+(n&1))>>3 # Chai Wah Wu, Nov 22 2023

Formula

a(n) = 1/8*n*(n^3-11*n^2+43*n-58) for n even;
a(n) = 1/8*n*(n-3)*(n^2-8*n+19) for n odd.
a(n) = A176145(n) - A211379(n).
G.f.: x^4*(2*x^5-3*x^4-7*x^3-x^2-2*x-1) / ((x-1)^5*(x+1)^2). [Colin Barker, Feb 14 2013]