A211382 Number of intersections of diagonals in the exterior of a regular n-gon.
0, 0, 0, 0, 7, 24, 63, 110, 242, 360, 650, 812, 1425, 1680, 2737, 2718, 4788, 5200, 7812, 8272, 12075, 11328, 17875, 18486, 25542, 26264, 35438, 29070, 47957, 48800, 63525, 64362, 82600, 77940, 105672, 106552, 133263, 134200, 165927, 149478, 204250, 205128, 248850, 249596, 300377
Offset: 3
Keywords
Links
- Robin Visser, Table of n, a(n) for n = 3..95
- Bjorn Poonen and Michael Rubinstein, The Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics 11 (1998), nr. 1, pp. 135-156; doi: 10.1137/S0895480195281246; arXiv: math.MG/9508209.
- Eric Weisstein's World of Mathematics, Regular Polygon Division by Diagonals.
Programs
-
Sage
def a(n): K = CyclotomicField(n); z = K.gen(); S = set() for i in range(n): for j in range(i+2, n): for k in range(j+1, n): for l in range(k+2, n+i): x = (z^(i-j)-z^(j-i))*(z^l-z^k)-(z^(k-l)-z^(l-k))*(z^j-z^i) y = (z^-j-z^-i)*(z^l-z^k)-(z^-l-z^-k)*(z^j-z^i) if (not y.is_zero()): S.add(x/y) return len(S) # Robin Visser, Jul 29 2024
Formula
a(n) = 1/24*n*(n-3)*(n-5)*(2*n-11) for n odd
Extensions
a(17)-a(29) from Martin Renner, Feb 24 2013
More terms from Robin Visser, Jul 29 2024