cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211440 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and 2w+3x+3y=0.

Original entry on oeis.org

1, 3, 5, 17, 23, 29, 53, 63, 73, 109, 123, 137, 185, 203, 221, 281, 303, 325, 397, 423, 449, 533, 563, 593, 689, 723, 757, 865, 903, 941, 1061, 1103, 1145, 1277, 1323, 1369, 1513, 1563, 1613, 1769, 1823, 1877, 2045, 2103, 2161, 2341, 2403, 2465
Offset: 0

Views

Author

Clark Kimberling, Apr 11 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Maple
    seq(op([10*j^2+6*j+1, 10*j^2 + 10*j + 3, 10*j^2 + 14*j + 5]),j=0..30); # Robert Israel, Apr 03 2019
  • Mathematica
    t[n_] := t[n] = Flatten[Table[2 w + 3 x + 3 y, {w, -n, n}, {x, -n, n}, {y, -n, n}]]
    c[n_] := Count[t[n], 0]
    t = Table[c[n], {n, 0, 30}]  (* A211440 *)
    (t - 1)/2                    (* integers *)
    LinearRecurrence[{1,0,2,-2,0,-1,1},{1,3,5,17,23,29,53},60] (* Harvey P. Dale, Aug 29 2021 *)

Formula

Conjectures from Colin Barker, May 15 2017: (Start)
G.f.: (1 + 3*x + x^2)*(1 - x + 4*x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x + x^2)^2).
a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7) for n>6.
(End)
From Robert Israel, Apr 03 2019: (Start)
a(3*j) = 10*j^2+6*j+1.
a(3*j+1) = 10*j^2 + 10*j + 3.
a(3*j+2) = 10*j^2 + 14*j + 5.
This has the conjectured g.f. and recurrence. (End)