cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A211449 (p-1)/x, where p = prime(n) and x = ord(4,p), the smallest positive integer such that 4^x == 1 mod p.

Original entry on oeis.org

0, 2, 2, 2, 2, 2, 4, 2, 2, 2, 6, 2, 4, 6, 2, 2, 2, 2, 2, 2, 8, 2, 2, 8, 4, 2, 2, 2, 6, 8, 18, 2, 4, 2, 2, 10, 6, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 6, 2, 6, 8, 2, 20, 10, 32, 2, 2, 2, 6, 8, 6, 2, 6, 2, 4, 2, 22, 16, 2, 2, 8, 2, 2, 2, 2, 2, 2, 18, 4, 4, 2, 2, 10, 12
Offset: 1

Views

Author

T. D. Noe, Apr 11 2012

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 4; Table[If[Mod[nn, p] == 0, 0, (p-1)/MultiplicativeOrder[nn, p]], {p, Prime[Range[100]]}]

A211451 (p-1)/x, where p = prime(n) and x = ord(6,p), the smallest positive integer such that 6^x == 1 mod p.

Original entry on oeis.org

0, 0, 4, 3, 1, 1, 1, 2, 2, 2, 5, 9, 1, 14, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 8, 10, 1, 1, 1, 1, 1, 1, 1, 6, 4, 1, 1, 6, 2, 4, 1, 3, 10, 2, 14, 1, 2, 1, 1, 1, 1, 14, 12, 1, 1, 2, 2, 1, 1, 5, 2, 2, 6, 62, 6, 2, 2, 6, 1, 3, 11, 2, 1, 1, 6, 2, 4, 1, 1, 24, 1, 15, 10
Offset: 1

Views

Author

T. D. Noe, Apr 11 2012

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 6; Table[If[Mod[nn, p] == 0, 0, (p-1)/MultiplicativeOrder[nn, p]], {p, Prime[Range[100]]}]

A211452 (p-1)/x, where p = prime(n) and x = ord(7,p), the smallest positive integer such that 7^x == 1 mod p.

Original entry on oeis.org

1, 2, 1, 0, 1, 1, 1, 6, 1, 4, 2, 4, 1, 7, 2, 2, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 4, 8, 1, 2, 2, 2, 2, 1, 3, 1, 2, 1, 1, 15, 19, 8, 2, 2, 1, 6, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 14, 2, 1, 2, 10, 3, 2, 3, 6, 1, 1, 11, 1, 6, 6, 1, 2, 4, 1, 2, 17, 22, 6, 1, 1, 6
Offset: 1

Views

Author

T. D. Noe, Apr 11 2012

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 7; Table[If[Mod[nn, p] == 0, 0, (p-1)/MultiplicativeOrder[nn, p]], {p, Prime[Range[100]]}]

A211453 (p-1)/x, where p = prime(n) and x = ord(8,p), the smallest positive integer such that 8^x == 1 mod p.

Original entry on oeis.org

0, 1, 1, 6, 1, 3, 2, 3, 2, 1, 6, 3, 2, 3, 2, 1, 1, 3, 3, 2, 24, 6, 1, 8, 6, 1, 6, 1, 9, 4, 18, 1, 2, 3, 1, 30, 3, 3, 2, 1, 1, 3, 2, 6, 1, 6, 3, 6, 1, 3, 8, 2, 30, 5, 16, 2, 1, 6, 3, 4, 3, 1, 9, 2, 6, 1, 33, 48, 1, 3, 4, 2, 6, 3, 3, 2, 1, 9, 2, 6, 1, 3, 10, 18
Offset: 1

Views

Author

T. D. Noe, Apr 11 2012

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 8; Table[If[Mod[nn, p] == 0, 0, (p-1)/MultiplicativeOrder[nn, p]], {p, Prime[Range[100]]}]

A211454 (p-1)/x, where p = prime(n) and x = ord(9,p), the smallest positive integer such that 9^x == 1 mod p.

Original entry on oeis.org

1, 0, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 10, 2, 2, 2, 2, 12, 6, 2, 12, 2, 2, 2, 4, 2, 6, 2, 4, 2, 2, 2, 2, 2, 2, 6, 4, 2, 2, 2, 2, 4, 2, 24, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 18, 4, 2, 2, 2, 18, 2, 8, 2, 2, 4, 2, 4, 2, 2, 6, 4, 2, 2, 2, 4, 2, 4, 2, 4, 10, 16
Offset: 1

Views

Author

T. D. Noe, Apr 11 2012

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 9; Table[If[Mod[nn, p] == 0, 0, (p-1)/MultiplicativeOrder[nn, p]], {p, Prime[Range[100]]}]

A385166 Let p = A002145(n) be the n-th prime == 3 (mod 4); a(n) = (p+1) * ord(5,p) / ord(2+-i,p) = (p+1) * ord(5,p) / A385165(n). Here ord(a,m) is the multiplicative order of a modulo m.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 5, 1, 1, 1, 1, 3, 2, 2, 1, 1, 2, 2, 1, 1, 1, 11, 1, 4, 3, 10, 1, 1, 1, 3, 1, 2, 1, 1, 1, 6, 1, 6, 1, 3, 1, 1, 1, 4, 3, 24, 1, 1, 1, 1, 1, 3, 1, 4, 2, 1, 1, 1, 1, 1, 2, 1, 1, 8, 1, 27, 1, 1, 1, 1, 20, 3, 1, 4, 1, 1
Offset: 1

Views

Author

Jianing Song, Jun 20 2025

Keywords

Comments

Of course if a and m are integers, it doesn't matter if the base ring is Z or Z[i] for ord(a,m).

Examples

			The multiplicative order of 2+-i modulo A002145(3) = 11 is A385165(3) = 30, so a(3) = (12*ord(5,11))/30 = 2.
The multiplicative order of 2+-i modulo A002145(13) = 83 is A385165(13) = 2296, so a(13) = (84*ord(5,83))/2296 = 3.
		

Crossrefs

Cf. A002145, A385165. Primes corresponding to special terms: A385168 (>1), A385167 (even), A385180 (divisible by 4).
Cf. A211450.

Programs

  • PARI
    quot(p) = my(z = znorder(Mod(5,p)), d = divisors((p+1)*z)); for(i=1, #d, if(Mod([2,-1;1,2],p)^d[i] == 1, return((p+1)*z/d[i]))) \\ for a prime p == 3 (mod 4), returns (p+1) * ord(5,p) / ord(2+-i, p)
    forprime(p=3, 1e3, if(p%4==3, print1(quot(p), ", ")))
Showing 1-6 of 6 results.