A211484 Numbers for which the canonical prime factorization contains only an even number of exponents, all of which are congruent to 1 modulo 3.
1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 48, 51, 55, 57, 58, 62, 65, 69, 74, 77, 80, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 112, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 162, 166, 176, 177, 178, 183
Offset: 1
Examples
6 is included, as its canonical prime factorization (2^1)*(3^1) contains an even number of exponents, all of which are congruent to 1 modulo 3.
Links
- Douglas Latimer, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
pfQ[n_]:=Module[{f=Transpose[FactorInteger[n]][[2]]},EvenQ[Length[f]] && Union[ Mod[f,3]]=={1}]; Join[{1},Select[Range[200],pfQ]] (* Harvey P. Dale, Mar 24 2016 *)
-
PARI
{plnt=1; k=1; print1(k, ", "); plnt++; mxind=76 ; mxind++ ; for(k=2, 10^6, M=factor(k);passes=1; sz = matsize(M)[1]; for(k=1,sz, if(sz%2 != 0, passes=0;break()); if( M[k,2] % 3 != 1, passes=0)); if( passes == 1 , print1(k, ", "); plnt++) ; if(mxind == plnt, break() ))}
-
PARI
is(n,f=factor(n))=omega(f)%2==0 && factorback(f[,2]%3)==1 \\ Charles R Greathouse IV, Sep 07 2017
Comments