cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211510 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2 = x*y - 2n.

Original entry on oeis.org

0, 0, 0, 0, 3, 0, 1, 6, 5, 4, 13, 0, 16, 12, 7, 8, 22, 10, 27, 20, 20, 8, 41, 14, 27, 32, 21, 36, 66, 0, 28, 38, 40, 36, 71, 12, 53, 60, 57, 16, 83, 14, 80, 60, 32, 64, 75, 50, 98, 62, 47, 16, 144, 36, 100, 88, 53, 52, 153, 36, 94, 76, 91, 98, 129, 20, 92, 124, 102
Offset: 0

Views

Author

Clark Kimberling, Apr 14 2012

Keywords

Comments

For a guide to related sequences, see A211422.
The original name was "... and w^2 = x*y + 2n", but this would yield 2 instead of 0 for a(3), as observed by Pontus von Brömssen. The corresponding sequence seems not to be in the OEIS yet. - M. F. Hasler, Jan 26 2020

Examples

			From _Bernard Schott_, Jan 26 2020: (Start)
For n = 4, there are 3 ordered solutions with (1,3,3), (2,3,4) and (2,4,3) so a(4) = 3.
For n = 5, there is no solution, hence a(5) = 0.
The only solution for n = 6 is (2,4,4) with 2^2 = 4*4 - 2*6, hence a(6) = 1. (End)
		

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t[n_] := t[n] = Flatten[Table[w^2 - x*y + 2 n, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
    c[n_] := Count[t[n], 0]
    t = Table[c[n], {n, 0, 70}]  (* A211510 *)
  • PARI
    apply( {A211510(n)=sum(w=1,n-2,my(w2n=(w^2-1)\n+2,s); fordiv(w^2+2*n,x, x>w2n||next; x>n&&break; s++);s)}, [1..100]) \\ M. F. Hasler, Jan 26 2020
  • Python
    import sympy
    def A211510(n): return sum(x<=n and x*n>=w**2+2*n for w in range(1,n+1) for x in sympy.divisors(w**2+2*n)) # Pontus von Brömssen, Jan 26 2020
    

Extensions

Name corrected by Pontus von Brömssen, Jan 26 2020