A211510 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2 = x*y - 2n.
0, 0, 0, 0, 3, 0, 1, 6, 5, 4, 13, 0, 16, 12, 7, 8, 22, 10, 27, 20, 20, 8, 41, 14, 27, 32, 21, 36, 66, 0, 28, 38, 40, 36, 71, 12, 53, 60, 57, 16, 83, 14, 80, 60, 32, 64, 75, 50, 98, 62, 47, 16, 144, 36, 100, 88, 53, 52, 153, 36, 94, 76, 91, 98, 129, 20, 92, 124, 102
Offset: 0
Keywords
Examples
From _Bernard Schott_, Jan 26 2020: (Start) For n = 4, there are 3 ordered solutions with (1,3,3), (2,3,4) and (2,4,3) so a(4) = 3. For n = 5, there is no solution, hence a(5) = 0. The only solution for n = 6 is (2,4,4) with 2^2 = 4*4 - 2*6, hence a(6) = 1. (End)
Links
- Pontus von Brömssen, Table of n, a(n) for n = 0..1024
Crossrefs
Cf. A211422.
Programs
-
Mathematica
t[n_] := t[n] = Flatten[Table[w^2 - x*y + 2 n, {w, 1, n}, {x, 1, n}, {y, 1, n}]] c[n_] := Count[t[n], 0] t = Table[c[n], {n, 0, 70}] (* A211510 *)
-
PARI
apply( {A211510(n)=sum(w=1,n-2,my(w2n=(w^2-1)\n+2,s); fordiv(w^2+2*n,x, x>w2n||next; x>n&&break; s++);s)}, [1..100]) \\ M. F. Hasler, Jan 26 2020
-
Python
import sympy def A211510(n): return sum(x<=n and x*n>=w**2+2*n for w in range(1,n+1) for x in sympy.divisors(w**2+2*n)) # Pontus von Brömssen, Jan 26 2020
Extensions
Name corrected by Pontus von Brömssen, Jan 26 2020
Comments