cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211525 Number of -1..1 arrays x(i) of n+1 elements i=1..n+1 with set{t,u,v in 0,1}((x[i+t]+x[j+u]+x[k+v])*(-1)^(t+u+v)) having two or four distinct values for every i,j,k<=n.

Original entry on oeis.org

8, 14, 24, 44, 80, 152, 288, 560, 1088, 2144, 4224, 8384, 16640, 33152, 66048, 131840, 263168, 525824, 1050624, 2100224, 4198400, 8394752, 16785408, 33566720, 67125248, 134242304, 268468224, 536920064, 1073807360, 2147581952, 4295098368
Offset: 1

Views

Author

R. H. Hardin, Apr 14 2012

Keywords

Examples

			Some solutions for n=5:
.-1....1....1...-1....1....0....1...-1...-1...-1....1...-1...-1....0....0...-1
..1....0....1...-1....0...-1....1....0....1...-1....1...-1....1....1...-1....0
.-1...-1...-1....1...-1....0....1...-1....1....1....1....1...-1....0....0...-1
..1....0...-1...-1....0....1...-1....0...-1....1...-1...-1....1...-1....1....0
.-1...-1...-1...-1....1....0....1...-1...-1...-1...-1....1....1....0....0....1
..1....0....1....1....0...-1...-1....0....1...-1....1....1....1...-1....1....0
		

Formula

Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3).
From Colin Barker, Mar 09 2018: (Start)
G.f.: 2*x*(4 - x - 10*x^2) / ((1 - 2*x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2) + 2^(n+1) for n even.
a(n) = 2^(n+1) + 2^((n+3)/2) for n odd.
(End)