cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A290075 Number of monomials in c(n) where c(1) = x, c(2) = y, c(n+2) = c(n+1) + c(n)^2.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 14, 24, 44, 80, 152, 288, 560, 1088, 2144, 4224, 8384, 16640, 33152, 66048, 131840, 263168, 525824, 1050624, 2100224, 4198400, 8394752, 16785408, 33566720, 67125248, 134242304, 268468224, 536920064, 1073807360, 2147581952, 4295098368
Offset: 1

Views

Author

Michael Somos, Jul 19 2017

Keywords

Examples

			G.f. = x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 14*x^7 + 24*x^8 + 44*x^9 + ...
c(3) = x^2 + y so a(3) = 2, c(4) = x^2 + (y + y^2) so a(4) = 3, c(5) = x^4 + x^2(2*y) + (y + 2*y^2) so a(5) = 5.
		

Crossrefs

Programs

  • Mathematica
    nn:=36; nn:=10; Rest[CoefficientList[Series[(x - x^2 - 2*x^3 + x^4 - x^5) / ((1 - 2*x) * (1 - 2*x^2)),{x, 0, nn}], x]] (* Georg Fischer, May 10 2020 *)
  • PARI
    {a(n) = if( n<3, n>0, my(e=n%2, m=2^((n+e)/2-2)); m * (m+2+e) / (1+e))};
    
  • PARI
    Vec(x*(1 - x - 2*x^2 + x^3 - x^4) / ((1 - 2*x)*(1 - 2*x^2)) + O(x^50)) \\ Colin Barker, Jul 22 2017

Formula

G.f.: (x - x^2 - 2*x^3 + x^4 - x^5) / ((1 - 2*x) * (1 - 2*x^2)).
0 = 4*a(n) - 2*a(n+1) - 2*a(n+2) + 1*a(n+3) for n>=3.
A088966(n) = a(2*n+2). A257273(n) = a(2*n+3). A211525(n) = a(n+8).
From Colin Barker, Jul 22 2017: (Start)
a(n) = 2^(n/2-1) + 2^(n-4) for n>2 and even.
a(n) = 3*2^((n-5)/2) + 2^(n-4) for n>2 and odd.
(End)
Given the sequence c(n, x, y), then the coefficients of: (1) c(n+2, sqrt(t), 0), (2) c(n+1, 0, t), and (3) c(n, t, t), each form the triangular sequence A103484. - Michael Somos, Jul 24 2017
Showing 1-1 of 1 results.