A211616 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and -2<=w+x+y<=2.
0, 6, 42, 102, 192, 312, 462, 642, 852, 1092, 1362, 1662, 1992, 2352, 2742, 3162, 3612, 4092, 4602, 5142, 5712, 6312, 6942, 7602, 8292, 9012, 9762, 10542, 11352, 12192, 13062, 13962, 14892, 15852, 16842, 17862, 18912, 19992, 21102, 22242, 23412, 24612, 25842
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A211422.
Programs
-
Mathematica
t = Compile[{{u, _Integer}}, Module[{s = 0}, (Do[If[-2 <= w + x + y <= 2, s = s + 1], {w, #}, {x, #}, {y, #}] &[Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]]; Map[t[#] &, Range[0, 70]] (* A211616 *) %/6 (* integers *) FindLinearRecurrence[%] (* Peter J. C. Moses, Apr 13 2012 *) Join[{0, 6},LinearRecurrence[{3, -3, 1},{42, 102, 192},38]] (* Ray Chandler, Aug 02 2015 *)
-
PARI
concat(0, Vec(6*x*(1 + 4*x - x^2 + x^3) / (1 - x)^3 + O(x^40))) \\ Colin Barker, Dec 04 2017
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
From Colin Barker, Dec 04 2017: (Start)
G.f.: 6*x*(1 + 4*x - x^2 + x^3) / (1 - x)^3.
a(n) = 3*(4 - 5*n + 5*n^2) for n>1.
(End)
Comments