A211637 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2>x^2+y^2.
0, 0, 1, 5, 13, 26, 48, 78, 119, 173, 240, 323, 421, 538, 677, 837, 1020, 1226, 1460, 1723, 2015, 2337, 2694, 3084, 3508, 3969, 4471, 5016, 5601, 6227, 6900, 7619, 8389, 9208, 10078, 11004, 11981, 13015, 14105, 15258, 16472, 17744, 19083, 20487, 21962, 23505
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A211422.
Programs
-
Maple
b:= proc(n) option remember; 1+floor(sqrt(n)) end: a:= proc(n) local c, x, y, w; c:= 0; for x to n do for y from x to n do w:= b(x^2+y^2); if w>n then break fi; c:= c+ (n-w+1)*`if`(x=y, 1, 2) od od: c end: seq (a(n), n=0..50); # Alois P. Heinz, May 10 2012
-
Mathematica
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[w^2 > x^2 + y^2, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]]; Map[t[#] &, Range[0, 50]] (* A211637 *) (* Peter J. C. Moses, Apr 13 2012 *)
Comments