cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211662 Number of iterations log_3(log_3(log_3(...(n)...))) such that the result is < 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Examples

			Records a(n)=0, 1, 2, 3, 4, for n=1, 2, 3^2, 3^3^2, 3^3^3^2 (=1, 2, 9, 3^9 = 19683, 3^19683).
		

Crossrefs

Formula

With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n)))...))); E_{i=1..0} := 1; example: E_{i=1..4} 3 = 3^(3^(3^3)) = 3^(3^27), we get:
a(E_{i=1..n} 3) = a(E_{i=1..n-1} 3)+1, for n>=1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=1} x^(E_{i=1..k} b(i,k)), where b(i,k)=3 for i