cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A211668 Number of iterations sqrt(sqrt(sqrt(...(n)...))) such that the result is < 3.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

For the general case of "Number of iterations f(f(f(...(n)...))) such that the result is < q, where f(x) = x^(1/p), p > 1, q > 1", the resulting g.f. is g(x) = 1/(1-x)*Sum_{k>=0} x^(q^(p^k))
= (x^q + x^(q^p) + x^(q^(p^2)) + x^(q^(p^3)) + ...)/(1-x).

Examples

			a(n) = 1, 2, 3, 4, 5 for n = 3^1, 3^2, 3^4, 3^8, 3^16, i.e., n = 3, 9, 81, 6561, 43946721.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Length[NestWhileList[Sqrt, n, # >= 3 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *)
  • PARI
    a(n) = {my(nbi = 0); if (n < 3, return (nbi)); r = n; nbi= 1; while ((nr = sqrt(r)) >= 3, nbi++; r = nr); return (nbi);} \\ Michel Marcus, Oct 23 2014
    
  • PARI
    A211668(n, c=0)={while(n>=3, n=sqrtint(n); c++); c} \\ M. F. Hasler, Dec 07 2018
    
  • Python
    from sympy import integer_log
    A048766=lambda n: integer_log(n,3)[0].bit_length() # Natalia L. Skirrow, May 17 2023

Formula

a(3^(2^n)) = a(3^(2^(n-1))) + 1, for n >= 1.
G.f.: g(x) = 1/(1-x)*Sum_{k >= 0} x^(3^(2^k))
= (x^3 + x^9 + x^81 + x^6561 + x^43946721 + ...)/(1 - x).

Extensions

Edited by Michel Marcus, Oct 23 2014 and M. F. Hasler, Dec 07 2018

A211666 Number of iterations log_10(log_10(log_10(...(n)...))) such that the result is < 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Different from A004216, A057427 and A185114.
For a general definition like "Number of iterations log_p(log_p(log_p(...(n)...))) such that the result is < q", where p > 1, q > 0, the resulting g.f. is
g(x) = (1/(1-x))*Sum_{k>=1} x^(E_{i=1..k} b(i,k)), where b(i,k)=p for i

Examples

			a(n) = 0, 1, 2, 3 for n = 1, 2, 10^2, 10^10^2 (= 1, 2, 100, 10^100).
		

Formula

With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n)))...))); E_{i=1..0} c := 1; example: E_{i=1..3} 10 = 10^(10^10) = 10^10000000000, we get:
a(E_{i=1..n} 10) = a(E_{i=1..n-1} 10)+1, for n>=1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=1} x^(E_{i=1..k} b(i,k)), where b(i,k)=10 for i
The explicit first terms of the g.f. are g(x) = (x^2+x^100+x^(10^100)+...)/(1-x).

A211670 Number of iterations (...(f_4(f_3(f_2(n))))...) such that the result is < 2, where f_j(x) := x^(1/j).

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Different from A001069, but equal for n < 16.

Examples

			a(n)=1, 2, 3, 4, 5 for n=2^(1!), 2^(2!), 2^(3!), 2^(4!), 2^(5!) (=2, 4, 64, 16777216, 16777216^5).
		

Programs

Formula

a(2^(n!)) = a(2^((n-1)!))+1, for n>1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=1} x^(2^(k!)). The explicit first terms of the g.f. are g(x) = (x^2+x^4+x^64+x^16777216+...)/(1-x).

A211669 Number of iterations f(f(f(...(n)...))) such that the result is < 2, where f(x) = cube root of x.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

For the general case of "Number of iterations f(f(f(...(n)...))) such that the result is < q, where f(x) = x^(1/p)", with p > 1, q > 1, the resulting g.f. is g(x) = 1/(1 - x)*Sum_{k>=0} x^(q^(p^k))
= (x^q + x^(q^p) + x^(q^(p^2)) + x^(q^(p^3)) + ...)/(1 - x).
The first term that equals 3 is a(512). - Harvey P. Dale, Jan 02 2015

Examples

			a(n) = 1, 2, 3, 4, 5, ... for n = 2^1, 2^3, 2^9, 2^27, 2^81, ..., i.e., n = 2, 8, 512, 134217728, 2417851639229258349412352, ... = A023365.
		

Programs

  • Mathematica
    Table[Length[NestWhileList[Surd[#,3]&,n,#>=2&]],{n,90}]-1 (* Harvey P. Dale, Jan 02 2015 *)
  • PARI
    a(n,c=0)={while(n>=2, n=sqrtnint(n,3); c++);c} \\ M. F. Hasler, Dec 07 2018

Formula

a(2^(3^n)) = a(2^(3^(n-1))) + 1, for n >= 1.
G.f.: 1/(1-x)*Sum_{k>=0} x^(2^(3^k))
= (x^2 + x^8 + x^512 + x^134217728 + ...)/(1 - x).

Extensions

Edited by M. F. Hasler, Dec 07 2018

A211667 Number of iterations sqrt(sqrt(sqrt(...(n)...))) such that the result is < 2.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Different from A001069, but equal for n < 256.

Examples

			a(n) = 1, 2, 3, 4, 5, ... for n = 2^1, 2^2, 2^4, 2^8, 2^16, ..., i.e., n = 2, 4, 16, 256, 65536, ... = A001146.
		

Crossrefs

Cf. A087046 (run lengths).

Programs

  • Mathematica
    a[n_] := Length[NestWhileList[Sqrt, n, # >= 2 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *)
  • PARI
    apply( A211667(n, c=0)={while(n>=2, n=sqrtint(n); c++); c}, [1..50]) \\ This defines the function A211667. The apply(...) provides a check and illustration. - M. F. Hasler, Dec 07 2018
    
  • PARI
    a(n) = if(n<=1,0, logint(logint(n,2),2) + 1); \\ Kevin Ryde, Jan 18 2024
    
  • Python
    A211667=lambda n: n and (n.bit_length()-1).bit_length() # Natalia L. Skirrow, May 16 2023

Formula

a(2^(2^n)) = a(2^(2^(n-1))) + 1, for n >= 1.
G.f.: g(x) = 1/(1-x)*Sum_{k>=0} x^(2^(2^k))
= (x^2 + x^4 + x^16 + x^256 + x^65536 + ...)/(1 - x).
a(n) = 1 + floor(log_2(log_2(n))) for n>=2. - Kevin Ryde, Jan 18 2024

A211663 Number of iterations log(log(log(...(n)...))) such that the result is < 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Same as A211661 for n < 16.

Examples

			a(n)=1, 2, 3, 4, for n=1, ceiling(e), ceiling(e^e), ceiling(e^e^e), = 1, 3, 16, 3814280, respectively.
		

Formula

With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n)))...))); E_{i=1..0} := 1; example: E_{i=1..4} 3 = 3^(3^(3^3)) = 3^(3^27), we get:
a(ceiling(E_{i=1..n} e)) = a(ceiling(E_{i=1..n-1} e))+1, for n>=1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=0} x^(ceiling(E_{i=1..k} e)). The explicit first terms of the g.f. are g(x) = (x + x^3 + x^16 + x^3814280 + ...)/(1-x).
Showing 1-6 of 6 results.