cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A211666 Number of iterations log_10(log_10(log_10(...(n)...))) such that the result is < 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Different from A004216, A057427 and A185114.
For a general definition like "Number of iterations log_p(log_p(log_p(...(n)...))) such that the result is < q", where p > 1, q > 0, the resulting g.f. is
g(x) = (1/(1-x))*Sum_{k>=1} x^(E_{i=1..k} b(i,k)), where b(i,k)=p for i

Examples

			a(n) = 0, 1, 2, 3 for n = 1, 2, 10^2, 10^10^2 (= 1, 2, 100, 10^100).
		

Formula

With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n)))...))); E_{i=1..0} c := 1; example: E_{i=1..3} 10 = 10^(10^10) = 10^10000000000, we get:
a(E_{i=1..n} 10) = a(E_{i=1..n-1} 10)+1, for n>=1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=1} x^(E_{i=1..k} b(i,k)), where b(i,k)=10 for i
The explicit first terms of the g.f. are g(x) = (x^2+x^100+x^(10^100)+...)/(1-x).

A211670 Number of iterations (...(f_4(f_3(f_2(n))))...) such that the result is < 2, where f_j(x) := x^(1/j).

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Different from A001069, but equal for n < 16.

Examples

			a(n)=1, 2, 3, 4, 5 for n=2^(1!), 2^(2!), 2^(3!), 2^(4!), 2^(5!) (=2, 4, 64, 16777216, 16777216^5).
		

Programs

Formula

a(2^(n!)) = a(2^((n-1)!))+1, for n>1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=1} x^(2^(k!)). The explicit first terms of the g.f. are g(x) = (x^2+x^4+x^64+x^16777216+...)/(1-x).

A211664 Number of iterations (...(log_4(log_3(log_2(n))))...) such that the result is < 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Examples

			a(n)=1, 2, 3, 4, 5 for n=1, 2, 2^3, 2^3^4, 2^3^4^5 (=1, 2, 8, 2417851639229258349412352, 2^3^1024).
		

Formula

With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n)))...))); E_{i=1..0} := 1; example: E_{i=1..4} 3 = 3^(3^(3^3)) = 3^(3^27), we get:
a(E_{i=1..n} (i+1)) = a(E_{i=1..n-1} (i+1))+1, for n>=1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=0} x^(E_{i=1..k} (i+1)).
The explicit first terms of the g.f. are g(x) = (x+x^2+x^(2^3)+x^(2^3^4)+x^(2^3^4^5)+...)/(1-x) =(x+x^2+x^8+x^2417851639229258349412352+...)/(1-x).

A211662 Number of iterations log_3(log_3(log_3(...(n)...))) such that the result is < 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Examples

			Records a(n)=0, 1, 2, 3, 4, for n=1, 2, 3^2, 3^3^2, 3^3^3^2 (=1, 2, 9, 3^9 = 19683, 3^19683).
		

Formula

With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n)))...))); E_{i=1..0} := 1; example: E_{i=1..4} 3 = 3^(3^(3^3)) = 3^(3^27), we get:
a(E_{i=1..n} 3) = a(E_{i=1..n-1} 3)+1, for n>=1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=1} x^(E_{i=1..k} b(i,k)), where b(i,k)=3 for i

A211661 Number of iterations log_3(log_3(log_3(...(n)...))) such that the result is < 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

For n<16 same as A211663.

Examples

			a(n)=1, 2, 3, 4, 5 for n=1, 3, 3^3, 3^3^3, 3^3^3^3 (=1, 3, 27, 7625597484987, 3^7625597484987).
		

Programs

  • Mathematica
    Table[Length[NestWhileList[Log[3,#]&,n,#>=1&]],{n,90}]-1 (* Harvey P. Dale, Mar 08 2020 *)

Formula

With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n)))...))); E_{i=1..0} := 1; example: E_{i=1..4} 3 = 3^(3^(3^3)) = 3^(3^27), we get:
a(E_{i=1..n} 3) = a(E_{i=1..n-1} 3)+1, for n>=1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=0} x^(E_{i=1..k} 3). The explicit first terms of the g.f. are g(x) = (x+x^3+x^27+x^7625597484987+...)/(1-x).

A211669 Number of iterations f(f(f(...(n)...))) such that the result is < 2, where f(x) = cube root of x.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

For the general case of "Number of iterations f(f(f(...(n)...))) such that the result is < q, where f(x) = x^(1/p)", with p > 1, q > 1, the resulting g.f. is g(x) = 1/(1 - x)*Sum_{k>=0} x^(q^(p^k))
= (x^q + x^(q^p) + x^(q^(p^2)) + x^(q^(p^3)) + ...)/(1 - x).
The first term that equals 3 is a(512). - Harvey P. Dale, Jan 02 2015

Examples

			a(n) = 1, 2, 3, 4, 5, ... for n = 2^1, 2^3, 2^9, 2^27, 2^81, ..., i.e., n = 2, 8, 512, 134217728, 2417851639229258349412352, ... = A023365.
		

Programs

  • Mathematica
    Table[Length[NestWhileList[Surd[#,3]&,n,#>=2&]],{n,90}]-1 (* Harvey P. Dale, Jan 02 2015 *)
  • PARI
    a(n,c=0)={while(n>=2, n=sqrtnint(n,3); c++);c} \\ M. F. Hasler, Dec 07 2018

Formula

a(2^(3^n)) = a(2^(3^(n-1))) + 1, for n >= 1.
G.f.: 1/(1-x)*Sum_{k>=0} x^(2^(3^k))
= (x^2 + x^8 + x^512 + x^134217728 + ...)/(1 - x).

Extensions

Edited by M. F. Hasler, Dec 07 2018

A211667 Number of iterations sqrt(sqrt(sqrt(...(n)...))) such that the result is < 2.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Different from A001069, but equal for n < 256.

Examples

			a(n) = 1, 2, 3, 4, 5, ... for n = 2^1, 2^2, 2^4, 2^8, 2^16, ..., i.e., n = 2, 4, 16, 256, 65536, ... = A001146.
		

Crossrefs

Cf. A087046 (run lengths).

Programs

  • Mathematica
    a[n_] := Length[NestWhileList[Sqrt, n, # >= 2 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *)
  • PARI
    apply( A211667(n, c=0)={while(n>=2, n=sqrtint(n); c++); c}, [1..50]) \\ This defines the function A211667. The apply(...) provides a check and illustration. - M. F. Hasler, Dec 07 2018
    
  • PARI
    a(n) = if(n<=1,0, logint(logint(n,2),2) + 1); \\ Kevin Ryde, Jan 18 2024
    
  • Python
    A211667=lambda n: n and (n.bit_length()-1).bit_length() # Natalia L. Skirrow, May 16 2023

Formula

a(2^(2^n)) = a(2^(2^(n-1))) + 1, for n >= 1.
G.f.: g(x) = 1/(1-x)*Sum_{k>=0} x^(2^(2^k))
= (x^2 + x^4 + x^16 + x^256 + x^65536 + ...)/(1 - x).
a(n) = 1 + floor(log_2(log_2(n))) for n>=2. - Kevin Ryde, Jan 18 2024

A211663 Number of iterations log(log(log(...(n)...))) such that the result is < 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Same as A211661 for n < 16.

Examples

			a(n)=1, 2, 3, 4, for n=1, ceiling(e), ceiling(e^e), ceiling(e^e^e), = 1, 3, 16, 3814280, respectively.
		

Formula

With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n)))...))); E_{i=1..0} := 1; example: E_{i=1..4} 3 = 3^(3^(3^3)) = 3^(3^27), we get:
a(ceiling(E_{i=1..n} e)) = a(ceiling(E_{i=1..n-1} e))+1, for n>=1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=0} x^(ceiling(E_{i=1..k} e)). The explicit first terms of the g.f. are g(x) = (x + x^3 + x^16 + x^3814280 + ...)/(1-x).

A211665 Minimal number of iterations of log_10 applied to n until the result is < 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Different from A055642 and A138902, cf. Example.
Instead the real-valued log function one can consider only the integer part (i.e., A004216), since log_b(x) < k <=> x < b^k <=> floor(x) < b^k for any integer k >= 0; that's also why the first 2, 3, 4, ... appears exactly for 10, 10^10, 10^(10^10) etc. - M. F. Hasler, Dec 12 2018

Examples

			a(n) = 1, 2, 3, 4 for n = 1, 10, 10^10, 10^(10^10), i.e., n = 1, 10, 10000000000, 10^10000000000.
a(n) = 2 for all n >= 10, n < 10^10.
		

Programs

  • Mathematica
    a[n_] := Length[NestWhileList[Log10, n, # >= 1 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *)
  • PARI
    a(n,i=1)={while(n=logint(n,10),i++);i} \\ M. F. Hasler, Dec 07 2018

Formula

With E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n)))...))); E_{i=1..0} := 1; example: E_{i=1..3} 10 = 10^(10^10) = 10^10000000000, we have:
a(E_{i=1..n} 10) = a(E_{i=1..n-1} 10) + 1, for n >= 1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=0} x^(E_{i=1..k} 10) = (x + x^10 + x^(10^10) + ...)/(1-x).

Extensions

Name reworded by M. F. Hasler, Dec 12 2018
Showing 1-9 of 9 results.