cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A084558 a(0) = 0; for n >= 1: a(n) = largest m such that n >= m!.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5
Offset: 0

Views

Author

Antti Karttunen, Jun 23 2003

Keywords

Comments

For n >= 1, a(n) = the number of significant digits in n's factorial base representation (A007623).
After zero, which occurs once, each n occurs A001563(n) times.
Number of iterations (...(f_4(f_3(f_2(n))))...) such that the result is < 1, where f_j(x):=x/j. - Hieronymus Fischer, Apr 30 2012
For n > 0: a(n) = length of row n in table A108731. - Reinhard Zumkeller, Jan 05 2014

Examples

			a(4) = 2 because 2! <= 4 < 3!.
		

References

  • F. Smarandache, "f-Inferior and f-Superior Functions - Generalization of Floor Functions", Arizona State University, Special Collections.

Crossrefs

Programs

  • Haskell
    a084558 n = a090529 (n + 1) - 1  -- Reinhard Zumkeller, Jan 05 2014
    
  • Maple
    0, seq(m$(m*m!),m=1..5); # Robert Israel, Apr 27 2015
  • Mathematica
    Table[m = 1; While[m! <= n, m++]; m - 1, {n, 0, 104}] (* Jayanta Basu, May 24 2013 *)
    Table[Floor[Last[Reduce[x! == n && x > 0, x]]], {n, 120}] (* Eric W. Weisstein, Sep 13 2024 *)
  • PARI
    a(n)={my(m=0);while(n\=m++,);m-1} \\ R. J. Cano, Apr 09 2018
    
  • Python
    def A084558(n):
      i=1
      while n: i+=1; n//=i
      return(i-1)
    print(list(map(A084558,range(101)))) # Natalia L. Skirrow, May 28 2023

Formula

From Hieronymus Fischer, Apr 30 2012: (Start)
a(n!) = a((n-1)!)+1, for n>1.
G.f.: 1/(1-x)*Sum_{k>=1} x^(k!).
The explicit first terms of the g.f. are: (x+x^2+x^6+x^24+x^120+x^720...)/(1-x).
(End)
Other identities:
For all n >= 0, a(n) = A090529(n+1) - 1. - Reinhard Zumkeller, Jan 05 2014
For all n >= 1, a(n) = A060130(n) + A257510(n). - Antti Karttunen, Apr 27 2015
a(n) ~ log(n^2/(2*Pi)) / (2*LambertW(log(n^2/(2*Pi))/(2*exp(1)))) - 1/2. - Vaclav Kotesovec, Aug 22 2025

Extensions

Name clarified by Antti Karttunen, Apr 27 2015

A211666 Number of iterations log_10(log_10(log_10(...(n)...))) such that the result is < 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Different from A004216, A057427 and A185114.
For a general definition like "Number of iterations log_p(log_p(log_p(...(n)...))) such that the result is < q", where p > 1, q > 0, the resulting g.f. is
g(x) = (1/(1-x))*Sum_{k>=1} x^(E_{i=1..k} b(i,k)), where b(i,k)=p for i

Examples

			a(n) = 0, 1, 2, 3 for n = 1, 2, 10^2, 10^10^2 (= 1, 2, 100, 10^100).
		

Formula

With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n)))...))); E_{i=1..0} c := 1; example: E_{i=1..3} 10 = 10^(10^10) = 10^10000000000, we get:
a(E_{i=1..n} 10) = a(E_{i=1..n-1} 10)+1, for n>=1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=1} x^(E_{i=1..k} b(i,k)), where b(i,k)=10 for i
The explicit first terms of the g.f. are g(x) = (x^2+x^100+x^(10^100)+...)/(1-x).

A211670 Number of iterations (...(f_4(f_3(f_2(n))))...) such that the result is < 2, where f_j(x) := x^(1/j).

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Different from A001069, but equal for n < 16.

Examples

			a(n)=1, 2, 3, 4, 5 for n=2^(1!), 2^(2!), 2^(3!), 2^(4!), 2^(5!) (=2, 4, 64, 16777216, 16777216^5).
		

Programs

Formula

a(2^(n!)) = a(2^((n-1)!))+1, for n>1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=1} x^(2^(k!)). The explicit first terms of the g.f. are g(x) = (x^2+x^4+x^64+x^16777216+...)/(1-x).

A211662 Number of iterations log_3(log_3(log_3(...(n)...))) such that the result is < 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Examples

			Records a(n)=0, 1, 2, 3, 4, for n=1, 2, 3^2, 3^3^2, 3^3^3^2 (=1, 2, 9, 3^9 = 19683, 3^19683).
		

Formula

With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n)))...))); E_{i=1..0} := 1; example: E_{i=1..4} 3 = 3^(3^(3^3)) = 3^(3^27), we get:
a(E_{i=1..n} 3) = a(E_{i=1..n-1} 3)+1, for n>=1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=1} x^(E_{i=1..k} b(i,k)), where b(i,k)=3 for i

A211661 Number of iterations log_3(log_3(log_3(...(n)...))) such that the result is < 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

For n<16 same as A211663.

Examples

			a(n)=1, 2, 3, 4, 5 for n=1, 3, 3^3, 3^3^3, 3^3^3^3 (=1, 3, 27, 7625597484987, 3^7625597484987).
		

Programs

  • Mathematica
    Table[Length[NestWhileList[Log[3,#]&,n,#>=1&]],{n,90}]-1 (* Harvey P. Dale, Mar 08 2020 *)

Formula

With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n)))...))); E_{i=1..0} := 1; example: E_{i=1..4} 3 = 3^(3^(3^3)) = 3^(3^27), we get:
a(E_{i=1..n} 3) = a(E_{i=1..n-1} 3)+1, for n>=1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=0} x^(E_{i=1..k} 3). The explicit first terms of the g.f. are g(x) = (x+x^3+x^27+x^7625597484987+...)/(1-x).

A211669 Number of iterations f(f(f(...(n)...))) such that the result is < 2, where f(x) = cube root of x.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

For the general case of "Number of iterations f(f(f(...(n)...))) such that the result is < q, where f(x) = x^(1/p)", with p > 1, q > 1, the resulting g.f. is g(x) = 1/(1 - x)*Sum_{k>=0} x^(q^(p^k))
= (x^q + x^(q^p) + x^(q^(p^2)) + x^(q^(p^3)) + ...)/(1 - x).
The first term that equals 3 is a(512). - Harvey P. Dale, Jan 02 2015

Examples

			a(n) = 1, 2, 3, 4, 5, ... for n = 2^1, 2^3, 2^9, 2^27, 2^81, ..., i.e., n = 2, 8, 512, 134217728, 2417851639229258349412352, ... = A023365.
		

Programs

  • Mathematica
    Table[Length[NestWhileList[Surd[#,3]&,n,#>=2&]],{n,90}]-1 (* Harvey P. Dale, Jan 02 2015 *)
  • PARI
    a(n,c=0)={while(n>=2, n=sqrtnint(n,3); c++);c} \\ M. F. Hasler, Dec 07 2018

Formula

a(2^(3^n)) = a(2^(3^(n-1))) + 1, for n >= 1.
G.f.: 1/(1-x)*Sum_{k>=0} x^(2^(3^k))
= (x^2 + x^8 + x^512 + x^134217728 + ...)/(1 - x).

Extensions

Edited by M. F. Hasler, Dec 07 2018

A211663 Number of iterations log(log(log(...(n)...))) such that the result is < 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Same as A211661 for n < 16.

Examples

			a(n)=1, 2, 3, 4, for n=1, ceiling(e), ceiling(e^e), ceiling(e^e^e), = 1, 3, 16, 3814280, respectively.
		

Formula

With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n)))...))); E_{i=1..0} := 1; example: E_{i=1..4} 3 = 3^(3^(3^3)) = 3^(3^27), we get:
a(ceiling(E_{i=1..n} e)) = a(ceiling(E_{i=1..n-1} e))+1, for n>=1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=0} x^(ceiling(E_{i=1..k} e)). The explicit first terms of the g.f. are g(x) = (x + x^3 + x^16 + x^3814280 + ...)/(1-x).
Showing 1-7 of 7 results.