cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211667 Number of iterations sqrt(sqrt(sqrt(...(n)...))) such that the result is < 2.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Different from A001069, but equal for n < 256.

Examples

			a(n) = 1, 2, 3, 4, 5, ... for n = 2^1, 2^2, 2^4, 2^8, 2^16, ..., i.e., n = 2, 4, 16, 256, 65536, ... = A001146.
		

Crossrefs

Cf. A087046 (run lengths).

Programs

  • Mathematica
    a[n_] := Length[NestWhileList[Sqrt, n, # >= 2 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *)
  • PARI
    apply( A211667(n, c=0)={while(n>=2, n=sqrtint(n); c++); c}, [1..50]) \\ This defines the function A211667. The apply(...) provides a check and illustration. - M. F. Hasler, Dec 07 2018
    
  • PARI
    a(n) = if(n<=1,0, logint(logint(n,2),2) + 1); \\ Kevin Ryde, Jan 18 2024
    
  • Python
    A211667=lambda n: n and (n.bit_length()-1).bit_length() # Natalia L. Skirrow, May 16 2023

Formula

a(2^(2^n)) = a(2^(2^(n-1))) + 1, for n >= 1.
G.f.: g(x) = 1/(1-x)*Sum_{k>=0} x^(2^(2^k))
= (x^2 + x^4 + x^16 + x^256 + x^65536 + ...)/(1 - x).
a(n) = 1 + floor(log_2(log_2(n))) for n>=2. - Kevin Ryde, Jan 18 2024