cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211685 Prime numbers > 1000 such that all the substrings of length >= 3 are primes (substrings with leading '0' are considered to be nonprime).

Original entry on oeis.org

1277, 1373, 1499, 1571, 1733, 1811, 1997, 2113, 2239, 2293, 2719, 3137, 3313, 3373, 3491, 3499, 3593, 3673, 3677, 3733, 3739, 3797, 4211, 4337, 4397, 4673, 4877, 4919, 5233, 5419, 5479, 6131, 6173, 6197, 6199, 6311, 6317, 6599, 6619, 6733
Offset: 1

Views

Author

Hieronymus Fischer, Jun 08 2012

Keywords

Comments

Only numbers > 1000 are considered, since all 3-digit primes are trivial members.
By definition, each term of the sequence with more than 4 digits is built up by an overlapped union of previous terms, i.e., a(59)=33739 has the two embedded previous terms a(14)=3373 and a(21)=3739.
The sequence is finite, the last term is 349199 (n=63). Proof of finiteness: Let p be a number with more than 6 digits. By the argument above, each 6-digit substring of p must be a previous term. The only 6-digit term is 349199. Thus, there is no number p with the desired property.

Examples

			a(1)=1277, since all substrings of length >= 3 are primes (127, 277, and 1277).
a(63)=349199, all substrings of length >= 3 (349, 491, 919, 199, 3491, 4919, 9199, 34919, 49199 and 349199) are primes.
		

Crossrefs