A211686 Prime numbers > 10000 such that all the substrings of length >= 4 are primes (substrings with leading '0' are considered to be nonprime).
11093, 11171, 11933, 12011, 12239, 12377, 12791, 12917, 13037, 13217, 13613, 14519, 14591, 14813, 14831, 15233, 15791, 16073, 16091, 16217, 16673, 16691, 17333, 17417, 17477, 18233, 18311, 18713, 18719, 18731, 19013, 19319, 19739, 19973, 21319
Offset: 1
Examples
a(1)=11093, since all substrings of length >= 4 are primes (1109, 1093, and 11093). a(263)=934919, all substrings of length >= 4 (9349, 3491, 4919, 93491, 34919 and 934919) are primes.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..263
Crossrefs
Programs
-
Mathematica
sspQ[n_]:=Module[{idn=IntegerDigits[n],s1,s2},s1=FromDigits[Most[idn]];s2=FromDigits[Rest[idn]];IntegerLength[s1]==IntegerLength[s2]==4 && AllTrue[{s1,s2},PrimeQ]]; Select[Prime[Range[1230,9592]],sspQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* The program generates all 253 five-digit terms of the sequence *)(* Harvey P. Dale, May 11 2018 *)
Comments