cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211768 G.f. satisfies: A(x) = 1 + x*A(x/A(-x)).

Original entry on oeis.org

1, 1, 1, 2, 4, 12, 35, 133, 497, 2256, 10123, 53131, 276210, 1638039, 9639943, 63526677, 416194299, 3009639922, 21672348693, 170290649517, 1334332599748, 11302630861664, 95587196023618, 867197921850406, 7862652321850812, 75983785567389333, 734442008292947615
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 12*x^5 + 35*x^6 + 133*x^7 +...
Related expansion:
x/A(-x) = x + x^2 + x^4 - x^5 + 6*x^6 - 14*x^7 + 72*x^8 - 250*x^9 + 1338*x^10 +..
		

Programs

  • Maple
    eq:= 1 - A(x) + x*A(x/A(-x)):
    AA[0]:= 1: c[0]:= 1:
    for n from 1 to 50 do
      S:= series(eval(eq, A = unapply(AA[n-1]+c[n]*x^n, x)), x, n+1);
      c[n]:= solve(convert(S,polynom),c[n]);
      AA[n]:= AA[n-1]+c[n]*x^n;
    od:
    seq(c[n],n=0..50); # Robert Israel, Aug 02 2017
  • Mathematica
    nmax = 26; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x*A[x/A[-x]]) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. HoldPattern[a[n_] -> k_] :> Set[a[n], k];
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+x*subst(A,x,x/subst(A,x,-x+x*O(x^n)))); polcoeff(A, n)}
    for(n=0,25,print1(a(n),", "))