A211773 Prime-generating polynomial: a(n) = 2*n^2 - 108*n + 1259.
1259, 1153, 1051, 953, 859, 769, 683, 601, 523, 449, 379, 313, 251, 193, 139, 89, 43, 1, -37, -71, -101, -127, -149, -167, -181, -191, -197, -199, -197, -191, -181, -167, -149, -127, -101, -71, -37, 1, 43, 89, 139, 193, 251, 313, 379, 449, 523, 601, 683, 769, 859, 953
Offset: 0
References
- Joe L. Mott and Kermite Rose, Prime-Producing Cubic Polynomials in Lecture Notes in Pure and Applied Mathematics (Vol. 220), Marcel Dekker Inc., 2001, pages 281-317.
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Marius Coman, Ten prime-generating quadratic polynomials, Preprint 2015.
- Joe L. Mott and Kermite Rose, Prime-Producing Cubic Polynomials.
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[2*n^2-108*n+1259: n in [0..49]]; // Bruno Berselli, May 18 2012
-
Mathematica
Table[2 n^2 + 40 n + 1, {n, -37, 962}] (* Mikk Heidemaa, Feb 18 2016 *)
-
PARI
a(n)=2*n^2 - 108*n + 1259 \\ Charles R Greathouse IV, Jun 29 2017
Formula
G.f.: (1259 - 2624*x + 1369*x^2)/(1-x)^3. - Bruno Berselli, May 18 2012
a(n-37) = 2*n^2 + 40*n + 1. - Mikk Heidemaa, Feb 18 2016
From Elmo R. Oliveira, Feb 09 2025: (Start)
E.g.f.: exp(x)*(1259 - 106*x + 2*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments