A211788 Triangle enumerating certain two-line arrays of positive integers.
1, 1, 1, 1, 4, 4, 1, 7, 21, 21, 1, 10, 47, 126, 126, 1, 13, 82, 324, 818, 818, 1, 16, 126, 642, 2300, 5594, 5594, 1, 19, 179, 1107, 4977, 16741, 39693, 39693, 1, 22, 241, 1746, 9335, 38642, 124383, 289510, 289510, 1, 25, 312, 2586, 15941, 77273, 301630, 939880, 2157150, 2157150
Offset: 1
Examples
Triangle begins .n\k.|..1....2....3....4....5....6 = = = = = = = = = = = = = = = = = = ..1..|..1 ..2..|..1....1 ..3..|..1....4....4 ..4..|..1....7...21...21 ..5..|..1...10...47..126..126 ..6..|..1...13...82..324..818..818 ... T(4,2) = 7: The 7 two-line arrays are ...1 1 1 2....1 1 2 2....1 2 2 2....1 1 1 2 ...1 1 1 2....1 1 2 2....1 2 2 2....1 1 2 2 ........................................... ...1 1 2 2....1 1 2 2....1 2 2 2........... ...1 1 1 2....1 2 2 2....1 1 2 2...........
Links
- L. Carlitz, Enumeration of two-line arrays, Fib. Quart., Vol. 11 Number 2 (1973), 113-130.
Formula
Recurrence equation:
T(1,1) = 1; T(n,n) = T(n,n-1); T(n+1,k) = Sum_{j = 1..k} (2*k-2*j+1)*T(n,j) for 1 <= k <= n.
T(n+1,k+1) = (1/n) * ((n - k)*Sum_{i = 0..k} C(n, k-i)*C(2*n+i, i) + Sum_{i = 1..k} C(n, k-i)*C(2*n+i, i-1)).
Row reverse has production matrix
1 1
3 3 1
5 5 3 1
7 7 5 3 1
...
Comments