cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A211791 a(n) = Sum_{y=1..n} Sum_{x=1..n} floor((x^k + y^k)^(1/k)) with k = 2.

Original entry on oeis.org

1, 7, 23, 54, 103, 175, 276, 409, 579, 791, 1050, 1360, 1724, 2149, 2640, 3198, 3832, 4543, 5337, 6217, 7192, 8265, 9437, 10716, 12103, 13609, 15231, 16978, 18857, 20869, 23018, 25307, 27745, 30337, 33084, 35992, 39066, 42309, 45728
Offset: 1

Views

Author

Clark Kimberling, Apr 26 2012

Keywords

Comments

Row 2 of A211798.

Examples

			For a(3) we get the floor() values (1+2+3) + (2+2+3) + (3+3+4) = 23.
		

Crossrefs

Programs

  • Mathematica
    f[x_, y_, k_] := f[x, y, k] = Floor[(x^k + y^k)^(1/k)]
    t[k_, n_] := Sum[Sum[f[x, y, k], {x, 1, n}], {y, 1, n}]
    Table[t[1, n], {n, 1, 45}]  (* 2*A002411 *)
    Table[t[2, n], {n, 1, 45}]  (* A211791 *)
    Table[t[3, n], {n, 1, 45}]  (* A211792 *)
    TableForm[Table[t[k, n], {k, 1, 12},
                     {n, 1, 16}]] (* A211798 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]]

Formula

a(n) = Sum_{y=1..n} Sum_{x=1..n} floor(sqrt(x^2 + y^2)).

Extensions

Definition corrected by Georg Fischer, Sep 10 2022

A211798 R(k,n) = Sum_{y=1..n} Sum_{x=1..n} floor((x^k + y^k)^(1/k)), square array read by descending antidiagonals.

Original entry on oeis.org

2, 12, 1, 36, 7, 1, 80, 23, 7, 1, 150, 54, 22, 7, 1, 252, 103, 51, 22, 7, 1, 392, 175, 97, 50, 22, 7, 1, 576, 276, 164, 95, 50, 22, 7, 1, 810, 409, 258, 162, 95, 50, 22, 7, 1, 1100, 579, 382, 254, 161, 95, 50, 22, 7, 1, 1452, 791, 541, 375, 253, 161, 95, 50, 22
Offset: 1

Views

Author

Clark Kimberling, Apr 26 2012

Keywords

Examples

			Northwest corner:
  2  12  36  80 150 252 392
  1   7  23  54 103 175 276
  1   7  22  51  97 164 258
  1   7  22  50  95 162 254
  1   7  22  50  95 161 254
  1   7  22  50  95 161 253
		

Crossrefs

Cf. A002411 ((1/2) * row 1), A002412 (limiting row), A211791 (row 2), A211792 (row 3).

Programs

  • Mathematica
    f[x_, y_, k_] := f[x, y, k] = Floor[(x^k + y^k)^(1/k)]
    t[k_, n_] := Sum[Sum[f[x, y, k], {x, 1, n}], {y, 1, n}]
    Table[t[1, n], {n, 1, 45}]  (* 2*A002411 *)
    Table[t[2, n], {n, 1, 45}]  (* A211791 *)
    Table[t[3, n], {n, 1, 45}]  (* A211792 *)
    TableForm[Table[t[k, n], {k, 1, 12},
                     {n, 1, 16}]] (* A211798 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]]

Formula

R(k,n) = Sum_{y=1..n} Sum_{x=1..n} floor((x^k + y^k)^(1/k)).

Extensions

Definition changed by Georg Fischer, Sep 10 2022
Showing 1-2 of 2 results.