cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A211791 a(n) = Sum_{y=1..n} Sum_{x=1..n} floor((x^k + y^k)^(1/k)) with k = 2.

Original entry on oeis.org

1, 7, 23, 54, 103, 175, 276, 409, 579, 791, 1050, 1360, 1724, 2149, 2640, 3198, 3832, 4543, 5337, 6217, 7192, 8265, 9437, 10716, 12103, 13609, 15231, 16978, 18857, 20869, 23018, 25307, 27745, 30337, 33084, 35992, 39066, 42309, 45728
Offset: 1

Views

Author

Clark Kimberling, Apr 26 2012

Keywords

Comments

Row 2 of A211798.

Examples

			For a(3) we get the floor() values (1+2+3) + (2+2+3) + (3+3+4) = 23.
		

Crossrefs

Programs

  • Mathematica
    f[x_, y_, k_] := f[x, y, k] = Floor[(x^k + y^k)^(1/k)]
    t[k_, n_] := Sum[Sum[f[x, y, k], {x, 1, n}], {y, 1, n}]
    Table[t[1, n], {n, 1, 45}]  (* 2*A002411 *)
    Table[t[2, n], {n, 1, 45}]  (* A211791 *)
    Table[t[3, n], {n, 1, 45}]  (* A211792 *)
    TableForm[Table[t[k, n], {k, 1, 12},
                     {n, 1, 16}]] (* A211798 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]]

Formula

a(n) = Sum_{y=1..n} Sum_{x=1..n} floor(sqrt(x^2 + y^2)).

Extensions

Definition corrected by Georg Fischer, Sep 10 2022

A211792 a(n) = Sum_{y=1..n} Sum_{x=1..n} floor((x^k + y^k)^(1/k)) with k = 3.

Original entry on oeis.org

1, 7, 22, 51, 97, 164, 258, 382, 541, 741, 982, 1271, 1611, 2008, 2466, 2986, 3577, 4241, 4982, 5807, 6715, 7714, 8808, 10000, 11297, 12701, 14217, 15848, 17600, 19477, 21482, 23620, 25895, 28313, 30879, 33592, 36460, 39487, 42678, 46036
Offset: 1

Views

Author

Clark Kimberling, Apr 26 2012

Keywords

Comments

Row 3 of A211798.

Examples

			For a(3) we get the floor() values (1+2+3) + (2+2+3) + (3+3+3) = 22.
		

Crossrefs

Programs

  • Mathematica
    f[x_, y_, k_] := f[x, y, k] = Floor[(x^k + y^k)^(1/k)]
    t[k_, n_] := Sum[Sum[f[x, y, k], {x, 1, n}], {y, 1, n}]
    Table[t[1, n], {n, 1, 45}]  (* 2*A002411 *)
    Table[t[2, n], {n, 1, 45}]  (* A211791 *)
    Table[t[3, n], {n, 1, 45}]  (* A211792 *)
    TableForm[Table[t[k, n], {k, 1, 12},
                     {n, 1, 16}]] (* A211798 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]]
  • PARI
    first(n) = { res = vector(n); res[1] = 1; for(i = 2, n, i3 = i^3; s = sum(j = 1, i-1, sqrtnint(i3 + j^3, 3)); res[i] = res[i-1] + sqrtnint(2*i3, 3) + 2*s; ); res } \\ David A. Corneth, Sep 12 2022

Formula

a(n) = Sum_{y=1..n} Sum_{x=1..n} floor((x^3 + y^3)^(1/3)).
a(n) = a(n-1) + floor((2*n^3)^(1/3)) + 2*Sum_{i = 1..n-1} floor((n^3 + i^3)^(1/3)) for n >= 2 and a(1) = 1. - David A. Corneth, Sep 12 2022

Extensions

Definition changed by Georg Fischer, Sep 10 2022
Showing 1-2 of 2 results.