A211798 R(k,n) = Sum_{y=1..n} Sum_{x=1..n} floor((x^k + y^k)^(1/k)), square array read by descending antidiagonals.
2, 12, 1, 36, 7, 1, 80, 23, 7, 1, 150, 54, 22, 7, 1, 252, 103, 51, 22, 7, 1, 392, 175, 97, 50, 22, 7, 1, 576, 276, 164, 95, 50, 22, 7, 1, 810, 409, 258, 162, 95, 50, 22, 7, 1, 1100, 579, 382, 254, 161, 95, 50, 22, 7, 1, 1452, 791, 541, 375, 253, 161, 95, 50, 22
Offset: 1
Examples
Northwest corner: 2 12 36 80 150 252 392 1 7 23 54 103 175 276 1 7 22 51 97 164 258 1 7 22 50 95 162 254 1 7 22 50 95 161 254 1 7 22 50 95 161 253
Programs
-
Mathematica
f[x_, y_, k_] := f[x, y, k] = Floor[(x^k + y^k)^(1/k)] t[k_, n_] := Sum[Sum[f[x, y, k], {x, 1, n}], {y, 1, n}] Table[t[1, n], {n, 1, 45}] (* 2*A002411 *) Table[t[2, n], {n, 1, 45}] (* A211791 *) Table[t[3, n], {n, 1, 45}] (* A211792 *) TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]] (* A211798 *) Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]]
Formula
R(k,n) = Sum_{y=1..n} Sum_{x=1..n} floor((x^k + y^k)^(1/k)).
Extensions
Definition changed by Georg Fischer, Sep 10 2022