A211799
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k<=x^k+y
0, 0, 0, 1, 1, 0, 4, 5, 1, 0, 10, 13, 5, 1, 0, 20, 26, 14, 5, 1, 0, 35, 48, 29, 14, 5, 1, 0, 56, 78, 53, 30, 14, 5, 1, 0, 84, 119, 88, 55, 30, 14, 5, 1, 0, 120, 173, 134, 90, 55, 30, 14, 5, 1, 0, 165, 240, 195, 138, 91, 55, 30, 14, 5, 1, 0, 220, 323, 270, 201, 139, 91
Offset: 1
Examples
Northwest corner: 0...0...1...4....10...20...35...56 0...1...5...13...26...48...78...119 0...1...5...14...29...53...88...134 0...1...5...14...30...55...90...138 0...1...5...14...30...55...91...139
Crossrefs
Cf. A211790.
Programs
-
Mathematica
z = 48; t[k_, n_] := Module[{s = 0}, (Do[If[w^k > x^k + y^k, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]; Table[t[1, n], {n, 1, z}] (* A000292 *) Table[t[2, n], {n, 1, z}] (* A211637 *) Table[t[3, n], {n, 1, z}] (* A211651 *) TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]] Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211799 *) Table[k (k - 1) (2 k - 1)/6, {k, 1, z}] (* row-limit sequence, A000330 *) (* Peter J. C. Moses, Apr 13 2012 *)
Comments