cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A211790 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k

Original entry on oeis.org

1, 7, 1, 23, 7, 1, 54, 22, 7, 1, 105, 51, 22, 7, 1, 181, 97, 50, 22, 7, 1, 287, 166, 96, 50, 22, 7, 1, 428, 263, 163, 95, 50, 22, 7, 1, 609, 391, 255, 161, 95, 50, 22, 7, 1, 835, 554, 378, 253, 161, 95, 50, 22, 7, 1, 1111, 756, 534, 374, 252, 161, 95, 50, 22, 7
Offset: 1

Views

Author

Clark Kimberling, Apr 21 2012

Keywords

Comments

...
Let R be the array in A211790 and let R' be the array in A211793. Then R(k,n) + R'(k,n) = 3^(n-1). Moreover, (row k of R) =(row k of A211796) for k>2, by Fermat's last theorem; likewise, (row k of R')=(row k of A211799) for k>2.
...
Generalizations: Suppose that b,c,d are nonzero integers, and let U(k,n) be the number of ordered triples (w,x,y) with all terms in {1,...,n} and b*w*k c*x^k+d*y^k, where the relation is one of these: <, >=, <=, >. What additional assumptions force the limiting row sequence to be essentially one of these: A002412, A000330, A016061, A174723, A051925?
In the following guide to related arrays and sequences, U(k,n) denotes the number of (w,x,y) as described in the preceding paragraph:
first 3 rows limiting row sequence

Examples

			Northwest corner:
  1, 7, 23, 54, 105, 181, 287, 428, 609
  1, 7, 22, 51,  97, 166, 263, 391, 554
  1, 7, 22, 50,  96, 163, 255, 378, 534
  1, 7, 22, 50,  95, 161, 253, 374, 528
  1, 7, 22, 50,  95, 161, 252, 373, 527
For n=2 and k>=1, the 7 triples (w,x,y) are (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2).
		

Crossrefs

Programs

  • Mathematica
    z = 48;
    t[k_, n_] := Module[{s = 0},
       (Do[If[w^k < x^k + y^k, s = s + 1],
           {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
    Table[t[1, n], {n, 1, z}]  (* A004068 *)
    Table[t[2, n], {n, 1, z}]  (* A211635 *)
    Table[t[3, n], {n, 1, z}]  (* A211650 *)
    TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
    Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211790 *)
    Table[n (n + 1) (4 n - 1)/6,
      {n, 1, z}] (* row-limit sequence, A002412 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

Formula

R(k,n) = n(n-1)(4n+1)/6 for 1<=k<=n, and
R(k,n) = Sum{Sum{floor[(x^k+y^k)^(1/k)] : 1<=x<=n, 1<=y<=n}} for 1<=k<=n.

A211802 R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2*w^k < x^k + y^k; square array read by descending antidiagonals.

Original entry on oeis.org

0, 3, 0, 11, 3, 0, 28, 13, 3, 0, 56, 32, 13, 3, 0, 99, 64, 34, 13, 3, 0, 159, 113, 68, 34, 13, 3, 0, 240, 181, 117, 70, 34, 13, 3, 0, 344, 272, 187, 125, 70, 34, 13, 3, 0, 475, 388, 282, 197, 125, 70, 34, 13, 3, 0, 635, 535, 406, 292, 203, 125, 70, 34, 13, 3, 0
Offset: 1

Views

Author

Clark Kimberling, Apr 22 2012

Keywords

Comments

Row 1: A182260.
Row 2: A211800.
Row 3: A211801.
Limiting row sequence: A016061.
Let R be the array in this sequence and let R' be the array in A211805. Then R(k,n) + R'(k,n) = 3^(n-1).
See the Comments at A211790.

Examples

			Northwest corner:
  0   3  11  28  56  99 159 240
  0   3  13  32  64 113 181 272
  0   3  13  34  68 117 187 282
  0   3  13  34  70 125 197 292
  0   3  13  34  70 125 203 302
		

Crossrefs

Programs

  • Mathematica
    z = 48;
    t[k_, n_] := Module[{s = 0},
       (Do[If[2 w^k < x^k + y^k, s = s + 1],
           {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
    Table[t[1, n], {n, 1, z}]  (* A182260 *)
    Table[t[2, n], {n, 1, z}]  (* A211800 *)
    Table[t[3, n], {n, 1, z}]  (* A211801 *)
    TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
    Flatten[Table[t[k, n - k + 1], {n, 1, 12},
                    {k, 1, n}]] (* this sequence *)
    Table[k (k - 1) (4 k + 1)/6, {k, 1,
      z}] (* row-limit sequence, A016061 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

Extensions

Definition corrected by Georg Fischer, Sep 10 2022
Showing 1-2 of 2 results.