A211802 R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2*w^k < x^k + y^k; square array read by descending antidiagonals.
0, 3, 0, 11, 3, 0, 28, 13, 3, 0, 56, 32, 13, 3, 0, 99, 64, 34, 13, 3, 0, 159, 113, 68, 34, 13, 3, 0, 240, 181, 117, 70, 34, 13, 3, 0, 344, 272, 187, 125, 70, 34, 13, 3, 0, 475, 388, 282, 197, 125, 70, 34, 13, 3, 0, 635, 535, 406, 292, 203, 125, 70, 34, 13, 3, 0
Offset: 1
Examples
Northwest corner: 0 3 11 28 56 99 159 240 0 3 13 32 64 113 181 272 0 3 13 34 68 117 187 282 0 3 13 34 70 125 197 292 0 3 13 34 70 125 203 302
Programs
-
Mathematica
z = 48; t[k_, n_] := Module[{s = 0}, (Do[If[2 w^k < x^k + y^k, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]; Table[t[1, n], {n, 1, z}] (* A182260 *) Table[t[2, n], {n, 1, z}] (* A211800 *) Table[t[3, n], {n, 1, z}] (* A211801 *) TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]] Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* this sequence *) Table[k (k - 1) (4 k + 1)/6, {k, 1, z}] (* row-limit sequence, A016061 *) (* Peter J. C. Moses, Apr 13 2012 *)
Extensions
Definition corrected by Georg Fischer, Sep 10 2022
Comments