A211790
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k
Original entry on oeis.org
1, 7, 1, 23, 7, 1, 54, 22, 7, 1, 105, 51, 22, 7, 1, 181, 97, 50, 22, 7, 1, 287, 166, 96, 50, 22, 7, 1, 428, 263, 163, 95, 50, 22, 7, 1, 609, 391, 255, 161, 95, 50, 22, 7, 1, 835, 554, 378, 253, 161, 95, 50, 22, 7, 1, 1111, 756, 534, 374, 252, 161, 95, 50, 22, 7
Offset: 1
Northwest corner:
1, 7, 23, 54, 105, 181, 287, 428, 609
1, 7, 22, 51, 97, 166, 263, 391, 554
1, 7, 22, 50, 96, 163, 255, 378, 534
1, 7, 22, 50, 95, 161, 253, 374, 528
1, 7, 22, 50, 95, 161, 252, 373, 527
For n=2 and k>=1, the 7 triples (w,x,y) are (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2).
-
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[w^k < x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A004068 *)
Table[t[2, n], {n, 1, z}] (* A211635 *)
Table[t[3, n], {n, 1, z}] (* A211650 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211790 *)
Table[n (n + 1) (4 n - 1)/6,
{n, 1, z}] (* row-limit sequence, A002412 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A211802
R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2*w^k < x^k + y^k; square array read by descending antidiagonals.
Original entry on oeis.org
0, 3, 0, 11, 3, 0, 28, 13, 3, 0, 56, 32, 13, 3, 0, 99, 64, 34, 13, 3, 0, 159, 113, 68, 34, 13, 3, 0, 240, 181, 117, 70, 34, 13, 3, 0, 344, 272, 187, 125, 70, 34, 13, 3, 0, 475, 388, 282, 197, 125, 70, 34, 13, 3, 0, 635, 535, 406, 292, 203, 125, 70, 34, 13, 3, 0
Offset: 1
Northwest corner:
0 3 11 28 56 99 159 240
0 3 13 32 64 113 181 272
0 3 13 34 68 117 187 282
0 3 13 34 70 125 197 292
0 3 13 34 70 125 203 302
-
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[2 w^k < x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A182260 *)
Table[t[2, n], {n, 1, z}] (* A211800 *)
Table[t[3, n], {n, 1, z}] (* A211801 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1], {n, 1, 12},
{k, 1, n}]] (* this sequence *)
Table[k (k - 1) (4 k + 1)/6, {k, 1,
z}] (* row-limit sequence, A016061 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A211803
Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^2>=x^2+y^2.
Original entry on oeis.org
1, 5, 14, 32, 61, 103, 162, 240, 341, 465, 618, 802, 1017, 1269, 1560, 1892, 2267, 2691, 3164, 3688, 4269, 4907, 5604, 6364, 7193, 8091, 9058, 10102, 11223, 12421, 13702, 15072, 16527, 18071, 19714, 21452, 23287, 25225, 27268, 29420
Offset: 1
A211804
Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^3>=x^3+y^3.
Original entry on oeis.org
1, 5, 14, 30, 57, 99, 156, 230, 323, 441, 588, 762, 965, 1199, 1476, 1792, 2149, 2547, 2990, 3488, 4039, 4643, 5300, 6012, 6797, 7645, 8558, 9540, 10591, 11729, 12944, 14236, 15607, 17065, 18620, 20262, 21993, 23817, 25746, 27778, 29915
Offset: 1
Showing 1-4 of 4 results.
Comments