cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A211825 G.f. satisfies: A(x) = 1 + x*( d/dx x*A(x) )^4.

Original entry on oeis.org

1, 1, 8, 120, 2528, 66704, 2080128, 74115840, 2952926720, 129637843968, 6205231472640, 321275171444736, 17880710254829568, 1064356462925701120, 67476012302577762304, 4539384115900126199808, 323034928746773883518976, 24248087962137553507450880
Offset: 0

Views

Author

Paul D. Hanna, Apr 21 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 8*x^2 + 120*x^3 + 2528*x^4 + 66704*x^5 + 2080128*x^6 +...
Related expansions:
d/dx x*A(x) = 1 + 2*x + 24*x^2 + 480*x^3 + 12640*x^4 + 400224*x^5 +...
A'(x) = 1 + 16*x + 360*x^2 + 10112*x^3 + 333520*x^4 + 12480768*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*deriv(x*A)^4);polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = 1 + x*(A(x) + x*A'(x))^4.
a(n) ~ c * 4^n * n! * n^(3/2), where c = 0.06185263969861377609335... - Vaclav Kotesovec, Aug 24 2017

A211826 G.f. satisfies: A(x) = 1 + x*( d/dx x*A(x) )^5.

Original entry on oeis.org

1, 1, 10, 190, 5080, 170080, 6724432, 303476320, 15300084160, 849174449680, 51341667458240, 3354970165353120, 235493617889171200, 17667618435092524160, 1410845692308772162560, 119491232651437498097920, 10700209630623386429434880, 1010278582501924072528588800
Offset: 0

Views

Author

Paul D. Hanna, Apr 21 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 10*x^2 + 190*x^3 + 5080*x^4 + 170080*x^5 +...
Related expansions:
d/dx x*A(x) = 1 + 2*x + 30*x^2 + 760*x^3 + 25400*x^4 + 1020480*x^5 +...
A'(x) = 1 + 20*x + 570*x^2 + 20320*x^3 + 850400*x^4 + 40346592*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*deriv(x*A)^5);polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = 1 + x*(A(x) + x*A'(x))^5.
a(n) ~ c * 5^n * n^(8/5) * n!, where c = 0.04375376183367762... - Vaclav Kotesovec, Aug 24 2017
Showing 1-2 of 2 results.