cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211867 a(n) = A097609(2*n-1,n), n>0; a(0)=1.

Original entry on oeis.org

1, 0, 2, 3, 18, 50, 215, 735, 2898, 10668, 41202, 156090, 601623, 2308878, 8923343, 34487453, 133749330, 519277512, 2020262660, 7869597840, 30699524018, 119894389380, 468768069882, 1834589752182, 7186572436887, 28175111736300, 110547143014050, 434049816801900
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 12 2013

Keywords

Programs

  • Maple
    a := n -> (-1)^n*binomial(2*n-1,n-1)*hypergeom([-n,n/2,(n+1)/2], [n,n+1], 4):
    seq(simplify(a(n)), n=0..27); # Peter Luschny, Nov 02 2016
  • Mathematica
    a[n_] := ((-1)^(3*n)*(2*n)!*HypergeometricPFQ[{(n+1)/2, -n, n/2}, {n, n+1}, 4])/(2*n!^2); a[0]=1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Feb 13 2013, from A097609 *)
  • PARI
    a(n) = if(n==0, 1, sum(k=0, n/2, (binomial(2*n,k)*binomial(n-k-1,n-2*k))/2)); \\ Altug Alkan, Oct 05 2015

Formula

G.f.: x*G'(x)/G(x), where G(x) is the g.f. of A055113.
G.f.: x * d/dx (log(sqrt(12*x+2*sqrt(1-4*x)+2)/4-sqrt(1-4*x)/4-1/4)).
a(n) = sum(j=0..n, C(2*j+n-1,j)*(-1)^(n+j)*C(2*n,n-j))/2, n>0; a(0)=1.
a(n) = A097609(2*n-1,n), n>0; a(0)=1. (Corrected by M. F. Hasler, Feb 12 2013)
a(n) = Sum_{j=0..n/2} (binomial(2*n,j)*binomial(n-j-1,n-2*j))/2. - Vladimir Kruchinin, Oct 05 2015
a(n) ~ 2^(2*n-1) / sqrt(5*Pi*n). - Vaclav Kotesovec, Apr 27 2024