A211869 a(n) = Sum_{j=1..n-1} j*(n-j)*b^(j-1) with b = floor(n^2/4)+1.
0, 1, 8, 98, 1712, 58985, 2541896, 187337236, 15687030920, 2014736789165, 280434300560320, 55591630021883014, 11642487182670742552, 3294318202343411333713, 969986091740868071844464, 371055858906757952457992360
Offset: 1
Examples
For n=5, the four products are 1*4 = 4, 2*3 = 6, 3*2 = 6, 4*1 = 4, giving the base-7 concatenation 4664. In base 10, this is a(5) = 1712. For a(6) we have that 1+floor(6^2/4) = 10 so there is no need of converting the concatenation to decimal. By definition the products are j*(n-j) for j in 1..5: 1*(6-1) = 5 = 5*(6-5), 2*(6-2) = 8 = 4*(6-2), 3*(6-3) = 9 so the result is a(6)=58985.
Links
- R. J. Cano, Table of n, a(n) for n = 1..57
- R. J. Cano, Additional information on this sequence.
- R. J. Cano, A211869: Gauss taught me that.
Programs
-
PARI
a(n,base=1+n^2\4)=sum(j=1, n-1, j*(n-j)*base^(n-1-j));
Formula
a(n) = Sum_{j=1..n-1} j*(n-j)*A033638(n)^(n-1-j).
Comments