A211870 Difference between sum of largest parts and sum of smallest parts of all partitions of n into an odd number of parts.
0, 0, 0, 0, 1, 3, 6, 13, 22, 38, 58, 93, 134, 202, 282, 405, 554, 774, 1035, 1412, 1862, 2489, 3243, 4267, 5496, 7137, 9106, 11684, 14782, 18782, 23575, 29689, 37010, 46238, 57275, 71048, 87489, 107844, 132083, 161853, 197243, 240418, 291619, 353702, 427167
Offset: 0
Keywords
Examples
a(6) = 6: partitions of 6 into an odd number of parts are [2,1,1,1,1], [2,2,2], [3,2,1], [4,1,1], [6], difference between sum of largest parts and sum of smallest parts is (2+2+3+4+6) - (1+2+1+1+6) = 17 - 11 = 6.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
g:= proc(n, i) option remember; [`if`(n=i, n, 0), 0]+ `if`(i>n, [0, 0], g(n, i+1)+(l-> [l[2], l[1]])(g(n-i, i))) end: b:= proc(n, i) option remember; [`if`(n=i, n, 0), 0]+`if`(i<1, [0, 0], b(n, i-1)+ `if`(n [l[2], l[1]])(b(n-i, i)))) end: a:= n-> g(n, 1)[1] -b(n, n)[1]: seq(a(n), n=0..50);
-
Mathematica
g[n_, i_] := g[n, i] = {If[n==i, n, 0], 0} + If[i>n, {0, 0}, g[n, i+1] + Reverse[g[n-i, i]]]; b[n_, i_] := b[n, i] = {If[n==i, n, 0], 0} + If[i<1, {0, 0}, b[n, i-1] + If[nJean-François Alcover, Feb 16 2017, translated from Maple *)