cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211880 Number of permutations of n elements with no fixed points and largest cycle of length 3.

Original entry on oeis.org

0, 0, 0, 2, 0, 20, 40, 210, 1120, 4760, 25200, 157850, 800800, 5345340, 35035000, 222472250, 1648046400, 12000388400, 88529240800, 720929459250, 5786188408000, 48072795270500, 424300329453000, 3731123025279650, 34083741984292000, 323768324084205000
Offset: 0

Views

Author

Alois P. Heinz, Feb 13 2013

Keywords

Comments

a(n) = A055814(n) - A123023(n). - Vaclav Kotesovec, Oct 09 2013

Examples

			a(3) = 2: (2,3,1), (3,1,2).
		

Crossrefs

Column k=3 of A211871.

Programs

  • Maple
    egf:= (exp(x^3/3)-1)*exp(x^2/2):
    a:= n-> n! *coeff(series(egf, x, n+1), x, n):
    seq(a(n), n=0..30);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n < 0, 0, If[n == 0, 1,
         Sum[Product[n - i, {i, 1, j - 1}] A[n - j, k], {j, 2, k}]]];
    T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
    a[n_] := T[n, 3];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 03 2021, after Alois P. Heinz in A211871 *)

Formula

E.g.f.: (exp(x^3/3)-1) * exp(x^2/2).
Recurrence: (n-3)*a(n) = (n-1)*(2*n-5)*a(n-2) + (n-3)*(n-2)*(n-1)*a(n-3) - (n-3)*(n-2)*(n-1)*a(n-4) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-5). - Vaclav Kotesovec, Oct 09 2013