A211881 Difference between sum of largest parts and sum of smallest parts of all partitions of n into an even number of parts.
0, 0, 0, 1, 2, 5, 9, 16, 26, 41, 65, 95, 142, 202, 293, 403, 568, 766, 1054, 1399, 1886, 2469, 3276, 4237, 5538, 7094, 9162, 11628, 14856, 18704, 23670, 29590, 37130, 46109, 57428, 70885, 87685, 107634, 132324, 161595, 197545, 240091, 291990, 353302, 427624
Offset: 0
Keywords
Examples
a(6) = 9: partitions of 6 into an even number of parts are [1,1,1,1,1,1], [2,2,1,1], [3,1,1,1], [3,3], [4,2], [5,1], difference between sum of largest parts and sum of smallest parts is (1+2+3+3+4+5) - (1+1+1+3+2+1) = 18 - 9 = 9.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
g:= proc(n, i) option remember; [`if`(n=i, n, 0), 0]+ `if`(i>n, [0, 0], g(n, i+1)+(l-> [l[2], l[1]])(g(n-i, i))) end: b:= proc(n, i) option remember; [`if`(n=i, n, 0), 0]+`if`(i<1, [0, 0], b(n, i-1)+ `if`(n [l[2], l[1]])(b(n-i, i)))) end: a:= n-> g(n, 1)[2] -b(n, n)[2]: seq(a(n), n=0..50);
-
Mathematica
g[n_, i_] := g[n, i] = {If[n==i, n, 0], 0} + If[i>n, {0, 0}, g[n, i+1] + Reverse[g[n-i, i]]]; b[n_, i_] := b[n, i] = {If[n==i, n, 0], 0} + If[i<1, {0, 0}, b[n, i-1] + If[nJean-François Alcover, Feb 15 2017, translated from Maple *)