cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211881 Difference between sum of largest parts and sum of smallest parts of all partitions of n into an even number of parts.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 9, 16, 26, 41, 65, 95, 142, 202, 293, 403, 568, 766, 1054, 1399, 1886, 2469, 3276, 4237, 5538, 7094, 9162, 11628, 14856, 18704, 23670, 29590, 37130, 46109, 57428, 70885, 87685, 107634, 132324, 161595, 197545, 240091, 291990, 353302, 427624
Offset: 0

Views

Author

Alois P. Heinz, Feb 13 2013

Keywords

Examples

			a(6) = 9: partitions of 6 into an even number of parts are [1,1,1,1,1,1], [2,2,1,1], [3,1,1,1], [3,3], [4,2], [5,1], difference between sum of largest parts and sum of smallest parts is (1+2+3+3+4+5) - (1+1+1+3+2+1) = 18 - 9 = 9.
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; [`if`(n=i, n, 0), 0]+
          `if`(i>n, [0, 0], g(n, i+1)+(l-> [l[2], l[1]])(g(n-i, i)))
        end:
    b:= proc(n, i) option remember;
          [`if`(n=i, n, 0), 0]+`if`(i<1, [0, 0], b(n, i-1)+
           `if`(n [l[2], l[1]])(b(n-i, i))))
        end:
    a:= n-> g(n, 1)[2] -b(n, n)[2]:
    seq(a(n), n=0..50);
  • Mathematica
    g[n_, i_] := g[n, i] = {If[n==i, n, 0], 0} + If[i>n, {0, 0}, g[n, i+1] + Reverse[g[n-i, i]]]; b[n_, i_] := b[n, i] = {If[n==i, n, 0], 0} + If[i<1, {0, 0}, b[n, i-1] + If[nJean-François Alcover, Feb 15 2017, translated from Maple *)

Formula

a(n) = A222048(n) - A222045(n).
a(n) = A116686(n) - A211870(n).