A211898 G.f.: exp( Sum_{n>=1} (2^n - (-1)^n)^n * x^n/n ).
1, 3, 9, 261, 13419, 7867287, 10444212819, 84955235950827, 2235017786095822257, 273416315791427558035965, 125533366255776787874473759857, 242979442003484538229530424638338553, 1852958949086213206247388599213928431454549
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 3*x + 9*x^2 + 261*x^3 + 13419*x^4 + 7867287*x^5 +... such that log(A(x)) = 3*x + 3^2*x^2/2 + 9^3*x^3/3 + 15^4*x^4/4 + 33^5*x^5/5 + 63^6*x^6/6 + 129^7*x^7/7 + 255^8*x^8/8 +...+ (2^n - (-1)^n)^n*x^n/n +...
Programs
-
PARI
{a(n)=polcoeff(exp(sum(k=1, n, (2^k-(-1)^k)^k*x^k/k)+x*O(x^n)), n)} for(n=0, 20, print1(a(n), ", "))
Formula
a(n) == 3 (mod 6) for n>0.
Comments