A211955 Triangle of coefficients of a polynomial sequence related to the Morgan-Voyce polynomials A085478.
1, 1, 1, 1, 3, 2, 1, 6, 10, 4, 1, 10, 30, 28, 8, 1, 15, 70, 112, 72, 16, 1, 21, 140, 336, 360, 176, 32, 1, 28, 252, 840, 1320, 1056, 416, 64, 1, 36, 420, 1848, 3960, 4576, 2912, 960, 128, 1, 45, 660, 3696, 10296, 16016, 14560, 7680, 2176, 256
Offset: 0
Examples
Triangle begins .n\k.|..0....1....2....3....4....5....6 = = = = = = = = = = = = = = = = = = = = ..0..|..1 ..1..|..1....1 ..2..|..1....3....2 ..3..|..1....6...10....4 ..4..|..1...10...30...28....8 ..5..|..1...15...70..112...72...16 ..6..|..1...21..140..336..360..176...32
Links
- Eric Weisstein's World of Mathematics, Morgan-Voyce polynomials
Crossrefs
Formula
T(n,0) = 1; T(n,k) = 2^(k-1)*binomial(n+k,2*k) for k > 0.
O.g.f. for column k (except column 0): 2^(k-1)*x^k/(1-x)^(2*k+1).
O.g.f.: (1-t*(x+2)+t^2)/((1-t)*(1-2*t(x+1)+t^2)) = 1 + (1+x)*t + (1+3*x+2*x^2)*t^2 + ....
Removing the first column from the triangle produces the Riordan array (x/(1-x)^3, 2*x/(1-x)^2).
The row polynomials R(n,x) := 1/2*b(n,2*x) + 1/2 = 1 + x*Sum_{k = 1..n} binomial(n+k,2*k)*(2*x)^(k-1).
Recurrence equation: R(n,x) = 2*(1+x)*R(n-1,x) - R(n-2,x) - x with initial conditions R(0,x) = 1, R(1,x) = 1+x.
Another recurrence is R(n,x)*R(n-2,x) = R(n-1,x)*(R(n-1,x) + x).
With P(n,x) as defined in the Comments section we have (x+2)/x - {Sum_{k = 0..2n} 1/R(k,x)}^2 = 2/(x*P(2*n+1,x)^2); (x+2)/x - {Sum_{k = 0..2n+1} 1/R(k,x)}^2 = (x+2)/(x*P(2*n+2,x)^2); consequently Sum_{k >= 0} 1/R(k,x) = sqrt((x+2)/x) for either x > 0 or x <= -2.
Comments