cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211956 Coefficients of a sequence of polynomials related to the Morgan-Voyce polynomials.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 4, 2, 1, 6, 4, 1, 9, 12, 4, 1, 12, 20, 8, 1, 16, 40, 32, 8, 1, 20, 60, 56, 16, 1, 25, 100, 140, 80, 16, 1, 30, 140, 224, 144, 32, 1, 36, 210, 448, 432, 192, 32, 1, 42, 280, 672, 720, 352, 64, 1, 49, 392, 1176, 1680, 1232, 448, 64
Offset: 0

Views

Author

Peter Bala, Apr 30 2012

Keywords

Comments

The row generating polynomials R(n,x) of A211955 factorize in the ring Z[x] as R(n,x) = P(n,x)*P(n+1,x) for n >= 1: explicitly, P(2*n,x) = 1/2*(b(2*n,2*x) + 1)/b(n,2*x) and P(2*n+1,x) = b(n,2*x), where b(n,x) := Sum_{k = 0..n} binomial(n+k,2*k)*x^k are the Morgan-Voyce polynomials of A085478. This triangle lists the coefficients in ascending powers of x of the polynomials P(n,x).
The odd numbered rows of the present triangle produce triangle A123519; the even numbered row entries are recorded separately in A211957 and appear to equal the unsigned and row reversed form of A204021. The even numbered rows with a factor of 2^(k-1) removed from the k-th column entries produce triangle A208513.

Examples

			Triangle begins
.n\k.|..0....1....2....3....4
= = = = = = = = = = = = = = =
..0..|..1
..1..|..1
..2..|..1....1
..3..|..1....2
..4..|..1....4....2
..5..|..1....6....4
..6..|..1....9...12....4
..7..|..1...12...20....8
..8..|..1...16...40...32....8
..9..|..1...20...60...56...16
...
		

Crossrefs

Formula

T(n,0) = 1; for k > 0, T(2*n,k) = 2^k * binomial(n+k,2*k) = A123519(n,k);
for k > 0, T(2*n-1,k) = n/(n+k)*(2^k)*binomial(n+k,2*k) = 2^(k-1)*A208513(n,k).
O.g.f.: ((1+t)*(1-t^2)-t^2*x)/((1-t^2)^2-2*t^2*x) = 1 + t + (1+x)*t^2 + (1+2*x)*t^3 + (1+4*x+2*x^2)*t^4 + ....
Row generating polynomials: P(2*n,x) := 1/2*(b(2*n,2*x)+1)/b(n,2*x) and P(2*n+1,x) := b(n,2*x), where b(n,x) := Sum_{k = 0..n} binomial(n+k,2*k)*x^k are the Morgan-Voyce polynomials of A085478.
The product P(n,x)*P(n+1,x) is the n-th row polynomial of A211955.
In terms of T(n,x), the Chebyshev polynomials of the first kind, we have P(2*n,x) = T(2*n,u) and P(2*n+1,x) = 1/u*T(2*n+1,u), where u = sqrt((x+2)/2).
Other representations for the row polynomials include
P(2*n,x) = 1/2*(1+x+sqrt(x^2+2*x))^n + 1/2*(1+x-sqrt(x^2+2*x))^n;
P(2*n,x) = n*Sum_{k = 0..n}(-1)^(n-k)/(n+k) * binomial(n+k,2*k) * (2*x+4)^k for n >= 1;
P(2*n+1,x) = (2*n+1)*Sum_{k=0..n} (-1)^(n-k)/(n+k+1) * binomial(n+k+1,2*k+1) * (2*x+4)^k.
Recurrence equation: P(n+1,x)*P(n-2,x) - P(n,x)*P(n-1,x) = x.
Row sums A005246(n+2).