A211970 Square array read by antidiagonal: T(n,k), n >= 0, k >= 0, which arises from a generalization of Euler's Pentagonal Number Theorem.
1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 6, 3, 1, 1, 1, 10, 5, 2, 1, 1, 1, 16, 7, 3, 1, 1, 1, 1, 24, 11, 4, 2, 1, 1, 1, 1, 36, 15, 5, 3, 1, 1, 1, 1, 1, 54, 22, 7, 4, 2, 1, 1, 1, 1, 1, 78, 30, 10, 4, 3, 1, 1, 1, 1, 1, 1, 112, 42, 13, 5, 4, 2, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
Array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, ... 6, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, ... 10, 7, 4, 3, 2, 1, 1, 1, 1, 1, 1, ... 16, 11, 5, 4, 3, 2, 1, 1, 1, 1, 1, ... 24, 15, 7, 4, 4, 3, 2, 1, 1, 1, 1, ... 36, 22, 10, 5, 4, 4, 3, 2, 1, 1, 1, ... 54, 30, 13, 7, 4, 4, 4, 3, 2, 1, 1, ... 78, 42, 16, 10, 5, 4, 4, 4, 3, 2, 1, ... 112, 56, 21, 12, 7, 4, 4, 4, 4, 3, 2, ... 160, 77, 28, 14, 10, 5, 4, 4, 4, 4, 3, ... 224, 101, 35, 16, 12, 7, 4, 4, 4, 4, 4, ... 312, 135, 43, 21, 13, 10, 5, 4, 4, 4, 4, ... 432, 176, 55, 27, 14, 12, 7, 4, 4, 4, 4, ... ...
Links
- L. Euler, De mirabilibus proprietatibus numerorum pentagonalium
- L. Euler, On the remarkable properties of the pentagonal numbers, arXiv:math/0505373 [math.HO], 2005.
- Eric Weisstein's World of Mathematics, Pentagonal Number Theorem
Comments