cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211982 Second crank moment minus second rank moment: M_2(n) - N_2(n) = 2*spt(n).

Original entry on oeis.org

2, 6, 10, 20, 28, 52, 70, 114, 160, 238, 322, 476, 630, 880, 1178, 1602, 2096, 2814, 3640, 4798, 6174, 7996, 10184, 13090, 16526, 20972, 26330, 33124, 41260, 51546, 63794, 79092, 97384, 119920, 146846, 179874, 219106, 266878, 323680, 392336, 473686
Offset: 1

Views

Author

Omar E. Pol, Jan 03 2013

Keywords

Comments

Also total number of smallest parts in all partitions of n, multiplied by 2.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, n,
          `if`(irem(n, i, 'r')=0, r, 0)+add(b(n-i*j, i-1), j=0..n/i))
        end:
    a:= n-> 2* b(n, n):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 17 2013
  • Mathematica
    terms = 41; gf = Sum[x^n/(1 - x^n)*Product[1/(1 - x^k), {k, n, terms}], {n, 1, terms}]; 2*CoefficientList[ Series[gf, {x, 0, terms}], x] // Rest (* Jean-François Alcover, Jan 17 2013, from 2nd formula *)

Formula

a(n) = A220909(n) - A220908(n) = 2*A092269(n).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (Pi*sqrt(2*n)) * (1 - Pi/(24*sqrt(6*n)) + (144+Pi^2)/(6912*n)). - Vaclav Kotesovec, Jul 31 2017