A212068 Number of (w,x,y,z) with all terms in {1,...,n} and 2w=x+y+z.
0, 0, 3, 10, 25, 49, 86, 137, 206, 294, 405, 540, 703, 895, 1120, 1379, 1676, 2012, 2391, 2814, 3285, 3805, 4378, 5005, 5690, 6434, 7241, 8112, 9051, 10059, 11140, 12295, 13528, 14840, 16235, 17714, 19281, 20937, 22686, 24529, 26470, 28510, 30653, 32900
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
Crossrefs
Cf. A211795.
Programs
-
Mathematica
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[2 w == x + y + z, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; Map[t[#] &, Range[0, 50]] (* A212068 *) FindLinearRecurrence[%] (* Peter J. C. Moses, Apr 13 2012 *) LinearRecurrence[{3, -2, -2, 3, -1},{0, 0, 3, 10, 25},42] (* Ray Chandler, Aug 02 2015 *)
-
PARI
concat(vector(2), Vec(x^2*(3 + x + x^2) / ((1 - x)^4*(1 + x)) + O(x^40))) \\ Colin Barker, Dec 02 2017
Formula
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).
From Colin Barker, Dec 02 2017: (Start)
G.f.: x^2*(3 + x + x^2) / ((1 - x)^4*(1 + x)).
a(n) = n*(10*n^2 - 3*n + 2)/24 for n even.
a(n) = (n - 1)*(10*n^2 + 7*n + 9)/24 for n odd.
(End)
Comments