A212084 Triangle T(n,k), n>=0, 0<=k<=2n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete bipartite graph K_(n,n), highest powers first.
1, 1, -1, 0, 1, -4, 6, -3, 0, 1, -9, 36, -75, 78, -31, 0, 1, -16, 120, -524, 1400, -2236, 1930, -675, 0, 1, -25, 300, -2200, 10650, -34730, 75170, -102545, 78610, -25231, 0, 1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, 5552680, -6796926, 4787174
Offset: 0
Examples
3 example graphs: +-----------+ . o o o o o o | . | |\ /| |\ /|\ /|\ / . | | X | | X | X | X . | |/ \| |/ \|/ \|/ \ . o o o o o o | . +-----------+ Graph: K_(1,1) K_(2,2) K_(3,3) Vertices: 2 4 6 Edges: 1 4 9 The complete bipartite graph K_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0]. Triangle T(n,k) begins: 1; 1, -1, 0; 1, -4, 6, -3, 0; 1, -9, 36, -75, 78, -31, 0; 1, -16, 120, -524, 1400, -2236, 1930, -675, ... 1, -25, 300, -2200, 10650, -34730, 75170, -102545, ... 1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, ... ...
Links
- Alois P. Heinz, Rows n = 0..90, flattened
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Wikipedia, Chromatic Polynomial
Crossrefs
Programs
-
Maple
P:= n-> add(Stirling2(n, k) *mul(q-i, i=0..k-1) *(q-k)^n, k=0..n): T:= n-> seq(coeff(P(n), q, 2*n-k), k=0..2*n): seq(T(n), n=1..8);
Formula
T(n,k) = [q^(2n-k)] Sum_{j=0..n} (q-j)^n * S2(n,j) * Product_{i=0..j-1} (q-i).
Extensions
T(0,0)=1 prepended by Alois P. Heinz, May 03 2024
Comments